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ABSTRACT
In this paper, we present a method for pattern selection
in collections of patterns discovered in multivariate time-
series. Because our data is continuous in nature, the pat-
tern language we consider is somewhat out of the ordinary,
compared to the common discrete patterns considered in the
data mining field. An equation discovery system is employed
to generate either regular algebraic equations, or more com-
plex differential equations. As the equation discovery system
generates a collection of equations per target variable, and
we require equations for each variable, we are dealing with
an abundance of equations, quite likely with serious levels
of redundancy. The method presented here selects a sub-
set of equations by considering to what extent the different
variables are covered by the selected equations, while opti-
mising the relevance of variables within the equations. As
such, the equation selection method returns a concise set of
equations, that captures the dependencies between the dif-
ferent time-series well, while minimizing redundancy. The
work in this paper is inspired by the new InfraWatch project,
which deals with high-resolution sensor data from a highway
bridge. The 145 sensors (sensing structural characteristics
such as stretch, vibration and temperature) are distributed
fairly densely over the bridge, such that adjacent sensors
are likely to show correlated signals. Especially in an ex-
ploratory setting, one would be interested in a small collec-
tion of prototype sensors with associated equations for how
these prototypes are related to other sensors in the vicin-
ity. In the experimental section, we demonstrate how the
sensors can be modeled by (differential) equations, and how
the equation selection method picks relevant equations that
models structural properties of the bridge sensibly.

1. INTRODUCTION
This paper is concerned with multivariate time-series, specif-

ically with data collected by a series of sensors measuring at
a steady frequency. In the typical case, these sensors mea-
sure the state of a certain system at various locations, such
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that the measured signals will show a certain degree of cor-
relation. Our aim is to model such correlations by means of
patterns discovery. Compared to traditional pattern discov-
ery, our data is challenging in two particular ways. First,
the data is of continuous nature, which excludes the ma-
jority of (discrete) pattern discovery approaches. Second,
the data is measured as a function of time, which implies a
certain dependency between consecutive measurements for
a given sensor. In order to deal with these two challenges,
we employ an equation discovery system that is capable of
finding both regular algebraic equations (the continuous as-
pect) as well as differential equations (the temporal aspect).
The outcome of the equation discovery process is a (poten-
tially large) collection of equations which model the value of
one sensor as a function of a small number of other sensors.
Such equations, and how well they approximate reality, can
be used by analysts to find elementary relations between
components of the observed system, and may also suggest
possible redundancies in the sensor network.

The equation discovery system in question is the Lagramge
system, developed as an extension of the earlier Lagrange
system by Todorovski and Džeroski [4, 5, 15]. The sys-
tem considers a grammar of well-formed equations, and con-
structs candidate equations in a fashion reminiscent of ILP
or multi-relational systems [8, 5]. That is, the essentially
structural descriptions of the equations are constructed top-
down, with progressively more complex equations being built
by adding new variables (the sensors) and functions. A spe-
cific difference to said relational approaches is the compo-
nent of Lagramge which fits parameters of the equations
by means of the downhill simplex or Levenberg-Marquart
algorithms [13]. As such, the system combines a pattern
discovery-inspired component with an error-minimization com-
ponent. The typical setting of a Lagramge run is to select a
target sensor sx and specify a declarative bias (the equation
grammar) after which the system returns a list of possible
equations. Each equation includes a right-hand side which
involves a number of sensors. The equations differ in the
sensors involved, and in the constants that were fitted, and
consequently in the error on the data.

Although Lagramge produces the desired information (a
collection of equations modeling local dependencies in the
observed system), it suffers from a problem that is com-
mon to most pattern discovery system: an abundance of
results. This abundance comes from a number of sources.
First of all, different equations may model the dependencies
equally well, approximately. This redundancy is especially
apparent if two or more sensors are highly correlated, such



Figure 1: (left) Aerial picture of the situation of the Hollandse Brug, which connects the ‘island’ Flevoland
to the province Noord-Holland, and the adjacent railway bridge. (right) Some of the sensors attached to the
underside of the bridge.

that one of the sensors can simply be exchanged for an-
other, without essentially affecting the model. Furthermore,
there may be terms in the equation that do not substan-
tially contribute to the overall fit, for example by having
insignificant constants. Finally, there is redundancy pro-
duced by running Lagramge once for each potential target
sensor (all sensors once, if need be), such that one sensor
may be modeled in terms of another, and vice versa. Note
that all of these instances of pattern-redundancy appear in
other pattern discovery settings as well, including overlap-
ping conditions, irrelevant conditions and so on. Observing
this analogy between the equation selection problem and the
pattern selection problem, we propose to select a small but
relevant collection of equations, using a method that is in-
spired by a number of recent pattern selection methods [9,
1].

The patterns selection methods mentioned are centered
around the idea of greedy forward selection of the patterns.
Starting with an empty set of patterns C, all remaining pat-
terns are considered in turn, and a pattern f is added if it
improves the quality of C ∪ f substantially. This process
continues until either some stopping-criterion is met, or all
patterns have been included. In the case of patterns (which
are typically interpreted as binary features), the quality of
C ∪ f is often a measure of the joint entropy of C ∪ f [9], or
the mutual information between C and f [1]. As an alter-
native, more syntax-oriented interpretations of quality may
be employed, for example to optimize coverage of all items
in itemsets. This is one of the approaches that we will as-
sume in our equation selection method. Replacing patterns
by equations, we will assume that a specific equation se-
lected in C accounts for all sensors that appear in, both the
left and right hand side of, the equation. Therefore, a new
equation that features only sensors that do not yet appear
in any of the elements of C is a desirable addition to C. Our
method thus adds equations that cover as many new sensors
as possible.

Our work on equation discovery in multivariate time-series
is inspired by a recently started project, called InfraWatch

[7]. In this project, we deal with 145 sensors attached to,
or embedded in, the concrete of a large highway bridge in
the Netherlands (see Section 2). These sensors measure the
weather and traffic load on various locations of the bridge at
a frequency of 100Hz. Because the sensors are distributed
over the bridge, and vibrations are conducted through the
rigid structural elements, nearby sensors will be correlated.
Furthermore, sensors of different nature (e.g., stretch vs.
vibration) may be co-located, such that potentially differ-
ential equations may be required to model the difference in
physical properties these types of sensors measure. Espe-
cially for exploratory purposes, an analysts would be served
be a concise, yet informative set of sensors. Although our
main application in this paper is related to the InfraWatch
project, one could apply the same techniques to other data
of similar kind. One example can be found in the Adaptive
System Management problem [10, 11], where large collection
of monitors are continuously measuring the state and health
of different components in an IT-system, and clear numeric
dependencies, even of differential nature, between the load
in certain components exist.

The work presented in this paper is related to vector au-
toregression (VAR) [6]. In VAR, the goal is to find one model
that best describes how multiple time series are related. In
contrast, our method focusses on finding multiple simple
models that describe how time series are related. Moreover,
we aim to find a non-overlapping set of models that do a
good job a describing how they are related.

2. INFRAWATCH
The InfraWatch project is centred around an important

Dutch highway bridge: the Hollandse Brug. This bridge is
located between the Flevoland and Noord-Holland provinces,
at the place where the Gooimeer joins the IJmeer (see Fig-
ure 1 on the left). It was opened in June 1969, and in April
2007 it was announced that measurements would have shown
that the bridge did not meet the quality and security re-
quirements. Repairs were launched in August 2007 and a
consortium of companies has installed a monitoring config-



Figure 2: Example of a truck passing the single camera located on the bridge. The graphs show the signal of
two sensors, with a vertical bar indicating the time that corresponds to the shown video frame.

uration underneath the Hollandse Brug with the main aim
to collect data for evaluating how the bridge responds. The
sensor network is part of the strengthening project which
was necessary to upgrade the bridge’s capacity by overlay-
ing.

The monitoring system comprises 145 sensors that mea-
sure different aspects of the condition of the bridge, at sev-
eral locations along the bridge (see Figure 1 on the right).
The following types of sensors are employed:

− ‘geo-phones’ (vibration sensors) that measure the ver-
tical movement of the bottom of the road-deck as well
as the supporting columns.

− strain-gauges embedded in the concrete and attached
to the outside, measuring horizontal stress in two di-
rections.

− thermometers embedded in the concrete and attached
to the outside.

Furthermore, there is a weather station, and a video-camera
that provides a continuous video stream of the actual traffic
on the bridge. Additionally, there are plans to monitor the
adjacent railway bridge.

Prior to the start of the InfraWatch project, an initial
monitoring application was developed by a team of students,
that allows the visual inspection of both video and sensor
information. The application allows the user to navigate
through a selected time-frame, and display the traffic pass-
ing over the bridge, while the data over one or more sensors
is displayed in synchronised fashion (see Figure 2). The user
can select the nature of the sensor as well as the location of
it, which does not necessarily have to correspond with the
location of the camera. Using this application, it is fairly
easy to already observe some patterns in the data. For ex-
ample, the vertical load data nicely corresponds with heavy
vehicles passing.

3. EQUATION SET SELECTION
As part of our first efforts on this data, we aim to find

characteristic sensors within the whole sensor sytem S that

can be regarded as a representation of a set of other sensors.
For example, if sensor s1 demonstrates the same behaviour
as sensors s2 and s3, it suffices to consider only s1 as a
prototype for these three sensors.

In order to determine the behaviour of the sensors, we
consider the measurement data that is gathered from each
sensor. That is, for each sensor s, we have a signal consisting
of a stream of continous data that represents some measured
aspect of the bridge. We simply denote the signal value of
sensor i at timestamp t by: si(t). Within the measurement
period T , we know at every timestamp t ∈ T the si(t) for
each sensor.

Based on these values, we can now find equations that
predict the signal values of one sensor based on the reading
of others. In theory, we can apply any class of equation
that described relations between the sensors. However, as
our interest is in finding simple relations between sensors,
we initially focus on linear equations. In other words, an
equation fx that approximates sx over time has the following
form:

fx(t) = c0 +
∑

sy∈S

cy · sy(t)

where sy ∈ S, x 6= y, cy ∈ R.
We denote the length of an equation f , L(f), as the num-

ber of sy ∈ S, for which cy 6= 0.
Additionaly, we are not so much interested in any equa-

tion that describes relationships between sensors, but rather
in good equations. Therefore, we restrict the set of equations
to those equations that are able to closely approximate the
signal value of the target sensor:

∑
t∈T

|sx(t)− fx(t)| ≤ ε · |T |

where ε is the error threshold. The term |T | compensates for
differences in the size of the time window considered, and
thus allows a definition of ε independent of |T |. Given the
set of signals, we can now find a set of candidate equations
C that match these requirements, by means of Lagramge.

This typically results in many equations, and even worse,
many of these equations describe the same behaviour for



Algorithm 1 ForwardSelection

FowardSelection(C)

1. F = ∅; Q = 0
2. for all f ∈↓ C do
3. F ′ = F ∪ f
4. Q′ = 0
5. for all f ′ ∈ F ′ do
6. Q′ = Q′ + simplicity(f)
7. end for
8. if Q′ > Q and overlap(F ′) = 0 then
9. F = F ′; Q = Q′

10. end if
11. end for
12. return F

the same set of sensors. This makes this problem essentially
a pattern subset selection problem, and we therefore focus
on the selection of a subset of equations that reduces the
redundancy of this equation set.

One source of redundancy comes from the possible pres-
ence of irrelevant terms in the equations. For example, given
the two equations,

fx(t) = 1.0 · sy(t)

and

fx(t) = 1.0 · sy(t) + 0.00001 · sz(t)

the latter might produce a smaller error, but is worse in
the sense that it includes sz that does not contribute signif-
icantly to the modeling of sx, and is likely to play a more
important role when paired to another target sensor. In or-
der to specify a preference for equations with relevant terms
(such as the first example), we define a simplicity measure
for equations that is based on the scalars cy. Although defin-
ing such a measure can be done in various ways, including
rather sophisticated statistical tests for the contribution of
each term, we have opted for a more straightforward ap-
proach here. The following definition states how the simplic-
ity of an equation depends on the scales of its parameters:

simplicity(f) =
1∑

c∈f | log |c|| .

In other words, we prefer equations with scalars c closer to
1. We assume here that signals are all within farily similar
domains, which is the case in our data. Furthermore, we
prefer c values to be closer to 1 (i.e. log |c| close to 0), to
indicate a direct dependence.

Given our set of candidate equations C, can we find a sub-
set F ⊆ C such that it leads to the highest total simplicity?
As the simplicity cannot be negative, we can trivially select
all equations to achive a maximum simplicity. However, this
would provide a lot of redundancy, as many of these equa-
tions will describe the same relationship between sensors.
Therefore, we restrict this subset such that a relationship
between sx and sy is described at most once. That is, for
each pair of sensors (sx, sy) there is at most one equation fx

or fy such that:

fx = cy · sy(t) + . . . , or

fy = cx · sx(t) + . . .

In order to derive an interesting set of equations, one op-
tion is to evaluate all suitable subsets of C, and select that

Algorithm 2 ForwardSelectionWithPruning

FowardSelectionWithPruning(C)

1. F = ∅; Q = 0
2. for all f ∈↓ C do
3. F ′ = F ∪ f ; Q′ = 0
4. for all f ′ ∈ F ′ do
5. Q′ = Q′ + simplicity(f)
6. end for
7. if Q′ > Q and overlap(F ′) = 0 then
8. F = F ′; Q = Q′

9. else
10. for all f ′′ ∈ F ′ \ f ′ do
11. F ′′ = F ′ \ f ′′

12. Q′′ = 0
13. for all f ′′′ ∈ F ′′ do
14. Q′′ = Q′′ + simplicity(f)
15. end for
16. if Q′′ ≥ Q then
17. F = F ′′; Q = Q′′

18. end if
19. end for
20. end if
21. end for
22. return F

one that has the highest simplicity. How would this scheme
perform?

For each set of selected equations, F , we need to check
the simplicity for each f ∈ F that can be done linearly
in the length of f : O(L(f)). For the complete set, this
becomes O(|F | · |S|). Furthermore, we need to check for
every pair (f1, f2) ∈ F × F if it does not overlap: O(|S|2).
In total, this thus becomes for each set: O(|F | · |S|+ |F |2 ·
|S|2) = O(|F |2 · |S|2) for each selected set. Clearly, there
are P(C) number of all possible subsets of equations. The
total therefore becomes O(P(C) · (|F |2 · |S|2)). Clearly, an
exhaustive search is far from feasible. Typically, P(C) would
be by far the biggest factor in this equation, making it the
main target to minimise.

Our alternative therefore is to perform a heuristic search
through the C search space. In this search, we utilise a
forward selection scheme in which we evaluate the candidate
equations in order and select only those that contribute to
the total simplicity (see Algorithm 1).

In our approach, we order the set of candidate equations,
denoted by ↓ C, on length either:

− ascending: f1 > f2 ↔ L(f1) > L(f2), or

− descending f1 < f2 ↔ L(f1) > L(f2).

Each candidate equation is then added to F and checked
whether this increases the overall simplicity. After all can-
didates are evaluated, the resulting F is returned.

Due to overlap, a new candidate equation might not be
considered for inclusion in the resulting set while it might
provide with a good simplicity increase. Alternatively, we
can then apply a pruning strategy on F . That is, we can
check for every candidate pattern whether some of the al-
ready selected equations can be removed from the set (see
Algorithm 2).



Table 1: Characteristics of the 145 used sensors.

sensor type #sensors location X-axis
1: geophone Z-axis 34 {1, 4}
2b: strain X-axis embedded 16 {6, 7}
2p: strain X-axis attached 34 {0, 2, 3, 4, 5}
3b: strain Y-axis embedded 28 {6, 7}
3p: strain Y-axis attached 13 {3, 5}
4b: temperature embedded 10 {7}
4p: temperature attached 10 {5}

4. EXPERIMENTS
In our experiments, we have used sensor measurement

data derived from the Hollandse Brug in the Netherlands,
as part of the InfraWatch project. This setup consist of 145
sensors. As can be seen in Table 1, there are 7 basic sensor
types for which one a priori can expect that members to be-
have similarly. Therefore, in our first experiments, we have
selected one target sensors from each of the 7 types.

In our preliminary experiments, we have aquired data rep-
resenting 5 minutes of measurements, taken on the 24th of
October in 2008, of all 145 sensors at 100 Hz, leading to 50
Mb of data. In our first experiments, we have downsam-
pled this file with averaging to 1Hz, resulting in 297 distinct
records.

Given each distinct target sensor, we use this dataset and
Lagramge to fit equations on the target sensor. An equa-
tion grammar was used that produces linear functions of the
form fx(t) = c0 +

∑
cy · sy(t), as discussed. Note that this

grammar can be easily upgraded to more complex, higher-
order equations, were one so inclined. The amount of data
available, and the expected nature of relationships between
sensors plays a role in this decision also.

In our experiments, we have set the maximal prediction
error to 1.0 · 10−5. Unless reported otherwise, we have lim-
ited the search depth to 6, that is, at most 5 sensors and one
constant c0 can appear in the equation. Using a heuristic
sum squared error-based beam search, we then obtain the
1000 best equations for each sensor type. In total, we there-
fore have 7000 candidate equations. In Table 2, examples
are shown of the kinds of equation sets discovered, for two
sensors: s100 and s301. Also reported for each equation is
the sum squared error that is obtained when approximating
the target sensor.

4.1 Regular Equations
The candidate set of equations is ordered at the start of

our forward selection algorithm. In our experiments we ap-
plied an order based on the length of the equations, either as-
cending or descending. With this forward selection scheme,
we obtain much smaller equation sets out of the original can-
didate set. That is, sets with either 193 or just 1 equation,
respectively, and with respect to the candidate set, we obtain
reduction ratios of 2.8% and 0.014%. While these reductions
seem very good, we should also focus on the resulting sim-
plicity of the sets. In order to make this assesment, we take
a look at the total simplicity, the sum of all simplicity val-
ues, of the resulting equation set. We see that we obtain
a total simplicity of 48.1 · 103 and 105, for the ascending
and descending order repectively. Moreover, we can have a

Sensor 100

1.196 Sensor 101

Sensor 102-0.272

Sensor 1060.156

Sensor 106

type 3b

Sensor 101 

type 2b
Sensor 100

type 2b

Sensor 102

type 2b

Figure 3: An example equation set shown in situ of
the Hollandse Brug, please refer to Table 1 for the
sensor type description.

look at how much of the sensor system is covered by these
equation sets, which is 174 sensor pairs and 5 sensor pairs
respectively.

However, such a forward selection algorithm with an over-
lap restriction is likely to select equations early on in the
search process that might conflict with better candidates
later on. Therefore, we have applied the pruning strategy
for both candidate orders to observe its results.

As for the simplicity, we see that pruning leads to much
better results in both the ascending and descending case. In
Figure 5 (left), we depict the increase of simplicity during
the run of the algorithm. As more candidates are being eval-
uated, we see that some of them can be added successfully to
the equation set to increase its simplicity. Both orders show
a similar increase in simplicity, although the descending ap-
proach leads to a slightly higher simplicity. The maximum
obtained qualities are 1.57 · 106 and 1.72 · 106, for ascending
and descending respectively.

We see the effect of pruning more clearly when looking
at how the cover behaves over time (Figure 5 (right)). By
cover, we mean the total number of unique sensors appearing
in the right-hand side of the selected equations. Depicted
for both candidate orders, we see how pruning affects the
cover in a non-monotonic manner in favour of increasing
the simplicity of the complete set of equations. In this re-
spect, the descending-ordered candidate set gradually leads
to larger covers of the sensor system, while the ascending
order seems to peak early on in the search process. This
eventually results in a cover of 40 and 154 for ascending and
descending respectively.

We depict an example equation set in Figure 3. This result
is obtained when using pruning on the descending-ordered
candidate set as described earlier on. We show the sensors
that are related to sensor 100, namely 101, 102, and 106:

f100(t) = 23.30+1.196·s101(t)−0.272·s102(t)+0.156·s106(t)

Note that all selected sensors fall within the same segment
of the complete bridge (a total of 7 segments). Furthermore,
all sensors are of the embedded type, which indicates that



Table 2: Examples of the first 5 equations found by Lagramge for sensors 100 and 220.

f100 = −4.799 + 1.16 · s101 − 0.2364 · s102 + 0.1773 · s104 + 0.1104 · s108 − 268.8 · s233 (SSE = 0.1084)
f100 = 16.98 + 1.143 · s101 − 0.2896 · s102 + 0.1347 · s104 + 0.1221 · s106 + 166.0 · s223 (SSE = 0.1086)
f100 = 16.70 + 1.14 · s101 − 0.293 · s102 + 0.1335 · s104 + 0.1204 · s106 + 128.8 · s207 (SSE = 0.109)
f100 = 11.8 + 1.150 · s101 − 0.3028 · s102 + 0.1469 · s104 + 0.09248 · s106 − 84.352 · s219 (SSE = 0.1092)
f100 = −4.812 + 1.152 · s101 − 0.2431 · s102 + 0.1916 · s104 + 0.1069 · s108 − 55.15 · s201 (SSE = 0.1094)
...
f301 = 2.215− 4.291 · 10−6 · s105 + 3.502 · s235 + 0.7977 · s317 (SSE = 1.888 · 10−5)
f301 = 2.275− 4.215 · 10−6 · s105 + 4.795 · s236 + 0.7916 · s317 (SSE = 1.892 · 10−5)
f301 = 2.251− 4.206 · 10−6 · s105 + 3.273 · s241 + 0.7939 · s317 (SSE = 1.895 · 10−5)
f301 = 2.289− 4.199 · 10−6 · s105 + 2.09 · s233 + 0.7902 · s317 (SSE = 1.901 · 10−5)
f301 = 2.328− 4.2240 · 10−6 · s105 − 0.8519 · s224 + 0.7865 · s317 (SSE = 1.902 · 10−5)
...
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Figure 5: The increase of the simplicity (left) and the cover (right) of the equation set, both as a function of
the evaluated candidate equations when using pruning.

this type of signal differs from the attached type in terms of
physical characteristics.

When looking at the original signals, we see that sensor
102 is indeed an inverted signal opposed to sensor 100, and
that 101 is quite similar to 100, and 106 is indeed also posi-
tively correlated. All signals show peaks occuring at similar
times, which are our events of interest (see Figure 4). In this
setup, we would select sensor 100 as a prototype to demon-
strate which events are occurring in the sensor system.

4.2 Differential Equations
Apart from the regular algebraic grammar used in the pre-

vious section, we can use more elaborate grammars in order
to fit more complex equations on the data. For example,
we can use differential equations to approximate the target
signal. This can actually be a very good way to model time
dependent aspects of the sensor system, as it includes the
temporal aspect more directly in the equations. To this end,
we have also used the above sensor data to fit the following
type of equation. Again, we have opted for relatively simple,
though differential, models of the data:

dfx

dt
= c0 +

∑
cy · sy(t)

Like before, we have used a beam search with the same
parameters to find the 1000 best equations that minimise

the prediction error for the target sensor. The first five dif-
ferential equations found are shown in Table 3. For equation
selection on the differential equations, we see similar results
as for the linear case. For ascending and descending, the for-
ward selection without pruning leads to a (relatively small)
simplicity of 983.2 and 27.6, a cover of 36 and 6, and an
equation subset size of 35 and 2, respectively. As a demon-
stration, the two equations in this last subset are as follows:

df100

dt
= 128.7− 0.40 · s162(t) + 5551 · s240(t)− 13.7 · s318(t)

df100

dt
= 32.8 + 0.12 · s116(t)− 1316 · s209(t)− 3.34 · s317(t)

Again, we see much better results when applying the prun-
ing strategy on the candidate equation set. For ascending
and descending, the forward selection with pruning leads to
a simplicity of 7.57 · 105 and 1.39 · 106, a cover of 26 and 56,
and a equation subset size of 10 and 45, respectively.

From this we can conclude that in terms of the number
of selected equations in both cases we obtain very good re-
duction ratios, 0.5% and 0.02% without pruning, and 0.14%
and 0.64% with pruning.

4.3 Select Target Sensors
In the previous experiments, we have used a set of 7 sen-

sors, one for each type, as targets for which equations were



Table 3: Examples of the first 5 differential equations found by Lagramge for sensor 100.

df100(t)
dt

= 12.95 + 0.1115 · s116(t)− 1374.8 · s209(t)− 1.6136 · s318(t) (SSE = 9.418)
df100(t)

dt
= −1.540 + 0.1076 · s116(t)− 1260.9 · s209(t) (SSE = 9.43133)

df100(t)
dt

= 27.61 + 0.1614 · s117(t)− 1147.1 · s209(t)− 2.7610 · s317(t) (SSE = 9.442)
df100(t)

dt
= 27.64 + 0.1682 · s117(t)− 1359.4 · s209(t)− 3.168 · s318(t) (SSE = 9.483)

df100(t)
dt

= 16.63 + 0.1458 · s117(t)− 1099.2 · s209(t)− 1.787 · s319(t) (SSE = 9.50)
...

-5

0

5

10

15

20

25

sensor 101

sensor 102

sensor 106

0

5

0

5

10

15

-10

-5

0

5

10

15

20

25

1 6
1

1
3

6
4

1
6

6
7

1
9

6
0

1

1
2

1

6
3

1

1
5

1

6
6

1

1
8

1

6
9

1

1
1

2

6
2

2

1
4

2

6
5

2

1
7

2

6
8

2

sensor 100

Figure 4: The sensor measurements for the signals
that correspond to the example shown in Figure 3.

fitted. However, it could be that this background knowledge
steers the search process significantly in a biased direction.
Therefore, we have derived a set of candidate equations for
each sensor in the system as target.

Moreover, we have reduced the search depth of Lagramge
such that exactly one sensor can be paired with one target
sensor. This allows the search space to be kept reasonable,
while it still leads to over 20 thousand candidate equations.
In addition, having only one sensor in the equation shows
more clearly the direct relation between the sensors.

For this, we have used the best performing variant of our
algorithm: with pruning and a descending-ordered candi-
date set. This resulted in an equation set of size 223. As for

the target sensors, a set of 26 distinct sensors were selected
as representations for the complete system. The resulting
equation set had a simplicity of 3.74 · 107 and covered 196
pairs of the sensor system.

How does this relate to the case of hand-picking a set of
target sensors? When selecting a set of target sensors from
the complete sensor space, we see that not all sensor types
are represented as targets. If we break these down to sensor
type, we get the following distribution:

type description targets equations
1 geophone Z-axis 8 12
2b strain X-axis embedded 0 0
2p strain X-axis attached 1 1
3b strain Y-axis embedded 1 1
3p strain Y-axis attached 0 0
4b temperature embedded 6 14
4p temperature attached 10 195

When visually inspecting the sensor signals, we see that
those sensor types that are not so well described by other
sensors tend to have more prototypes in the resulting set.
For example, when inspecting the signals corresponding to
sensor type 1, the geophone sensors, we see that all chosen
target sensors of this type fluctuate quite a lot (see Figure
6).

5. CONCLUSION
Increasingly, physical systems are being equipped with

sensors that in some form monitor its behaviour. In this
paper, we focus on one such system in particular, the Hol-
landse Brug, which in the context of the InfraWatch project
has been equipped with a multitude of sensors that measure
aspects such as vibrations and strain. The aim of the project
is to use the derived stream of sensor data to find interesting
patterns and features that can be considered characteristic
for its short and long-term behaviour.

In this paper, the focus was on finding a small set of in-
teresting sensors within the large set of available sensors.
As monitoring the complete system at once is very hard, we
have proposed to model dependencies between sensors, and
find characteristic sensors that can serve as a prototype for
other sensors. The monitoring and exploratory analysis of
the data can then be restricted to this subset of sensors. The
prototype sensors should ideally contain the same features
(peaks, response to traffic, etc.) as all the other sensors they
represent.

Dealing with numeric data is a hard task for pattern min-
ing techniques. However, we propose to shift the context
slightly. Instead of grouping sensors based on their dis-
crete events, we propose to group those sensors that can
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Figure 6: The signal values of some of the geophone
sensors, that are hard to group. As expected, in
contrast to other sensors, we see that the events are
not as clearly present in the signals

be used well to describe other sensors in the form of equa-
tions. Although many specific implementations can be used,
our inital results focus on linear and first-order differential
equations. In these first experiments, we see that adjacent
sensors, those that are likely to measure similar events, are
indeed grouped by our approach.

When looking at the signal behaviour within the group we
see that distinct peaks, which indicate distinct traffic loads,
occur at similar time points, and stand out clearly from the
noise in the signal.
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