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Abstract Although there is a growing need for multi-relational data
mining solutions in KDD, the use of obvious candidates from the field
of Inductive Logic Programming (ILP) has been limited. In our view
this is mainly due to the variation in ILP engines, especially with
respect to input specification, as well as the limited attention for
relational database issues. In this paper we describe an approach which
uses UML as the common specification language for a large range of
ILP engines. Having such a common language will enable a wide range
of users, including non-experts, to model problems and apply different
engines without any extra effort. The process involves transformation
of UML into a language called CDBL, that is then translated to a
variety of input formats for different engines.

Introduction

A central problem in the specification of a multi-relational data mining problem is the
definition of a model of the data. Such a model directly determines the type of
patterns that will be considered, and thus the direction of the search. Sucj
specifications are usually referred to as declarative or language bias in ILP. [14].
Most current systems use logic-based formalisms to specify the language bias (e.g.,
Progol, S-CART, Claudien, ICL, Tilde, Warmr [13, 12, 6, 7, 3, 8]). Although most of
these formalisms are quite similar and make use of the same concepts (e.g., types and
modes), there are still differences between the formalisms that make the sharing of the
language bias specification between engines a non-trivial task.  The main reasons for
this are:
• the different formalisms each have their own syntax; the user needs to be familiar

with all of them



• many formalisms contain certain constructs, the semantics of which, sometimes
in a subtle way, reflect behavioral characteristics of the inductive algorithm.

The use of different ILP-systems would be simplified significantly if a common
declarative bias language were available.  Such a language should have the following
characteristics:

• The common language should be usable for a large range of ILP systems, which
means that it should be easy to translate a bias specification from the common
language to the native language of the ILP system

• It should be easy to learn.  This means it should make use of concepts most users
are familiar with.  In the ideal case, the whole language itself is a language that
the intended users are familiar with already

• The bias should not just serve as a necessary prerequisite for running the
induction algorithm, but should also be usable as a shared piece of information or
documentation about a problem within a team of analysts with varying levels of
technical expertise

• It should be easy to judge the complexity of a problem from a single glance at the
declarative bias. A graphical representation would be desirable.

In this paper we propose the use of the Unified Modeling Language (UML) [2, 15, 16,
17]  as the language of choice for specifying declarative bias of such nature. Over the
past few years UML has proven itself as a versatile tool for modeling a large range of
applications in various domains. For ILP the Class Diagrams with their usefulness in
database modeling are specifically interesting. Our discussion will be based on these
diagrams.

Why do we wish to use UML to express bias? First of all, as UML is an intuitive
visual language, essentially consisting of annotated graphs, we can easily write down
the declarative bias for a particular domain or judge the complexity of a given data
model [9]. Another reason for using UML is its widespread use in database (as well as
object oriented) modelling. UML has effectively become a standard with thorough
support in many commercial tools. Some tools allow the reverse engineering of a data
model from a given relational database, directly using the table specifications and
foreign key relations. If we can come up with a process of using UML in ILP
algorithms, we would then have practically automated the analysis process of a
relational database. Finally, UML may serve as a common means of stating
declarative bias languages used in the different ILP engines.

Although it is clear that UML is a good candidate for specifying first order
declarative bias, it may not be directly clear how the different engines will actually be
making use of the UML declarations. Its use in our previously published Multi-
Relational Data Mining framework [10, 11] is straightforward, as this framework and
the related engine Fiji2 have been designed around the use of UML from the outset.
To translate UML bias declarations to logic-based bias languages, we use an
intermediate textual representation, called Common Declarative Bias Language
(CDBL). CDBL is essentially a set of Prolog predicates, which can be easily
processed by the different translation procedures. Translation procedures for the



popular engines Tilde, Warmr and Progol are currently available. The whole process
of connecting an ILP engine to a relational database now becomes a series of
translation steps as is illustrated by the diagram in figure 1. We have implemented and
embedded each of these steps into a single GUI.

The investigation of UML as a common declarative bias language for non-experts
was motivated by the efforts involved in the Esprit IV project Aladin. This project
aims at bringing ILP capabilities to a wider, commercial audience by embedding a
range of ILP algorithms into the commercial Data Mining tool, Clementine.

The outline of this paper is as follows. A section describing UML and its potential
as first order declarative bias follows this introduction. We then give a short overview
of the syntax of the Common Declarative Bias Language. In Translating CDBL we
give an algorithm for translating CDBL to ILP input. Next we analyze the usefulness
of UML as a declarative bias language compared to other approaches in Comparing
UML to traditional languages. This section is followed by a Conclusion.

UML

The Unified Modelling Language is the result of unifying the information systems
best engineering practices. UML has been adopted by the OMG (Object Management
Group) as a standard since November 1997 [15]. From the large set of modelling tools
provided by UML we will focus on the richest and most commonly used one: Class
Diagrams [16]. These diagrams model exactly the concepts relevant for ILP, namely
tables and the relation between them. In fact when we write UML in this paper we are
referring specifically to Class Diagrams. There are two specific concepts within the
Class Diagrams that we will be focusing on. The first is the concept of class. A class
is a description of a set of objects that share the same features, relationships, and
semantics. In a Class Diagram, a class is represented as a rectangle. Typically, a class

Figure 1 The complete process of using UML with existing engines.



represents some tangible entity in the problem domain, and maps to a table in the
database.

The second concept is that of association. An association is a structural
relationship that specifies that objects of one class are connected to objects of another.
An important aspect of an association is its multiplicity. This specifies how many
objects in one class are related to a single object in another, and vice versa. The
multiplicity can thus be interpreted as the constraints on the association. Associations
typically map to (foreign key) relations in the database although they sometimes need
to be represented by an extra table, in the case of n-to-m relationships. An association
is graphically represented as a line between two classes, that has certain labels (name,
multiplicity, etc.) attached to it.

To illustrate these concepts, we show the Class Diagram describing part of the
mutagenesis problem, a common benchmark problem within ILP [18]. As can be seen
in figure 2, there are three classes: molecule, atom and bond. Four associations
between these classes determine how objects in each class relate to objects in another
class. As a bond involves 2 atoms (in different roles) there are two associations
between atom and bond. The multiplicity of an association determines how many
objects in one class correspond to a single object in another class. For example, a
molecule has one or more atoms, but an atom belongs to exactly one molecule.

In order to see how UML may serve as input to an ILP engine we have to examine
how the elements of a Class Diagram map to concepts in logic programming. An
obvious way of doing this is to make classes and their attributes correspond to
predicates and their arguments [8]. We do not specify whether these predicates need
to be extensional or intentional. That is, both data originating from relational
databases, as well as from Prolog databases including background knowledge can be
modelled. Associations between predicates are used as constraints on the sharing of
variables between these predicates, much in the same way as foreign links in [19].
Associations join two attributes in one or two predicates, which in logic programming

Figure 2 UML model of the mutagenesis problem



terms means that a single variable may occur in the two positions in the argument lists
identified by the two attributes.

Not only the existence of associations, but also the nature thereof in terms of its
multiplicity provides bias. We will use this knowledge in three possible ways [10]:
• Look-ahead. For some refinements to a clause, the set of objects that

support the clause is not actually changed. Therefore, it may be desirable to
use a look-ahead in the form of extra refinements [3]. Given the multiplicity
of an association involved in a refinement, we can directly decide whether
this refinement changes anything to the support of the clause, and therefore
whether the look-ahead is necessary. For example, in the mutagenesis
domain a clause molecule(…) can be extended to form molecule(X,
M), atom(X, Y, N, O, P). However, this refinement provides the
same support, as all molecules have at least one atom (multiplicity 1..n). A
look-ahead such as molecule(X, M), atom(X, Y, carbon, O,
P) would make more sense.

• Non-determinate. Associations that have a multiplicity of n on at least one
side are called non-determinate. Non-determinate associations indicate that a
variable introduced in one literal may be bound in several alternative ways.
Such multiple use of a variable has a large impact on the size of the search
space. Testing large numbers of non-determinate clause can be avoided if the
data model indicates that a particular association is determinate, i.e. has a
multiplicity 1.

• Mutual exclusion. Some algorithms refine a single pattern into a set of
derived patterns on the basis of the value of a single nominal attribute. The
subsets belonging to these patterns do not necessarily form a partitioning of
the original subset, in the sense that they may be overlapping. However,
some algorithms, notably those for inducing decision trees, do require these
subsets to be mutually exclusive. A multiplicity of 0..1 or 1 indicates that
such a split may be made without the danger of overlap.

CDBL

In order to provide a textual format for the information stored in Class Diagrams that
is suitable for interpretation by ILP engines, we introduce the Common Declarative
Bias Language (CDBL). The aim of CDBL is to act as an intermediate language
between UML and the specific declarative bias languages available for each ILP
engine. As the translation from the graphical model to CDBL is trivial, we only need
to produce engine specific translation procedures for CDBL in order to have an
automatic procedure for using UML as declarative bias.

A CDBL definition is built up of a set of statements, ground facts to a Prolog
interpreter. Each of these statements provides information about an element of the
graphical model. Each table, association or constraint is thus described by a single
statement.

One of the ideas behind the design of CDBL is the clear distinction between
declarations about the relational bias, which is formed by restrictions from the data



model, and search bias, which contains restrictions that are relevant to the current
search strategy. The relational bias can usually be derived from the database schema
automatically, whereas the search bias depends on the particular interest of the user.
In most cases, one will want to try different forms of search bias, but keep the same
relational bias.

Relational bias The relational bias is specified by expressions of the sort:

table(TableName, AttributeList).
types(TableName, TypeList).
association(AssociationName, Tablel, Attributel, Table2,

Attribute2, MinMultiplicityl, MaxMultiplicityl,
MinMultiplicity2, MaxMultiplicity2).

The types can be one of three predefined types, numeric, nominal and
binary and determine which operators can be used in conditions involving the
attribute. They are not used to determine how tables can be joined.

Search bias The following statements, among others, are part of the search bias:

target(Table, Attribute).

This statement indicates that the single table, called Table, represents the concept
to be learned. The (optional) second argument determines that one of attributes in
Table is used as the primary target for prediction. Appointing the target in the set of
tables determines what type of object is analysed, and thus for example how support
and frequency of patterns are computed. Note that positive and negative examples
appear in the same table, and can be identified by the value of Attribute.

direction(Association, Direction).

This statement indicates that refinements may only be made in a certain direction
along association Association rather than both ways.

fix(Table, AttributeList).

This statement indicates that if table Table is introduced in a pattern, all of the
attributes provided in AttributeList are fixed by conditions on their values.

The CDBL representation of the example introduced in the previous section looks
as follows:

table(molecule, [mol, log_mutagenicity]).
table(atom, [mol, id, element, type, charge]).
table(bond, [mol, id1, id2, type]).

types(molecule, [nominal, numeric]).
types(atom, [nominal, nominal, nominal, nominal, numeric]).



types(bond, [nominal, nominal, nominal, nominal]).

association(participates1, atom, id, bond, id1, 1, 1, 0, n).
association(participates2, atom, id, bond, id2, 1, 1, 0, n).
association(atomin, atom, mol, molecule, mol, 1, n, 1, 1).
association(bondin, bond, mol, molecule, mol, 0, n, 1, 1).

target(molecule, log_mutagenicity).

fix(bond, [type]).

direction(atomin, left).
direction(bondin, left).

Translating CDBL

This section describes an algorithm for translating CDBL specifications into language
specifications for one of the currently supported engines, the ILP system Tilde [3, 4].
Our translation algorithm for converting CDBL into Tilde specifications consists of
four steps:

1. generate predict and tilde_mode settings
2. generate types for tables
3. generate types and rmodes for standard operators (comparison etc.)
4. generate rmodes, constraints and look-ahead specifications for tables

Step 1

Step 1 is trivial: based on the target specification in the CDBL input, the
corresponding predict setting is generated; based on the type of the argument to be
predicted Tilde is set into classification or regression mode.

Step 2

Step 2 is implemented as follows:

2.1 for each table T:
2.1.1 read its type specification types(T, L)
2.1.2 change each type t in L into a unary term
with functor t and an anonymous variable as
argument

2.2 for each association between T1.A1 and T2.A2 :
2.2.1 unify the types of the corresponding
attributes

2.3 ground the type specifications by instantiating each
variable to a different constant



For the mutagenesis example given above this yield:

Types = { molecule(nominal(1), numeric(2), atom(nominal(1),
nominal(3), nominal(4), nominal(5), numeric(6)),
bond(nominal(1), nominal(3), nominal(3),
numeric(7)) }

With these type specifications it is ensured that the same variable can only occur in
the place of arguments that have a chain of associations between them. At the same
time, information on the original types is still available; this information will be used
to decide, e.g., which variables can be compared using numerical comparison
operators.

Step 3

Step 3 consists of generating rmodes, types and possibly look-ahead for a number of
standard operators (=, <, …).  Based on the compare setting in CDBL, one can allow
comparisons between variables that a) have the same type; b) represent the same
attribute of different instances; c) represent different attributes of the same instance.

For each allowed operator (the user can specify which operators are allowed),
rmode and type specifications for comparisons of variables with the same type can be
generated in a trivial manner; e.g.,

rmode(+X < +Y).                % argument of < predicate are
input arguments
type(numeric(X) < numeric(X)). % only comparisons between
same type allowed

If we want to allow only comparisons between the same attribute of different
instances, respectively different attributes of the same instance, this cannot be
specified using only type and mode declarations.  Tilde provides the possibility to
specify constraints of the form constraint(A,B) where A is a literal (or conjunction of
literals) that is considered for insertion in a certain node in the tree and B is a
condition that has to be true in order for the insertion to be valid. For instance, the
following code could be used for these constraints:

same_attribute(X,Y) :-
occurs(Lit1), Lit1 =.. [F|Args1], strict_member(X,
Args1), occurs(Lit2), Lit2 \== Lit1, Lit2 =..
[F|Args2], strict_member(Y, Args2).

in_same_tuple(X,Y) :-
occurs(Lit), Lit =.. [F|Args], strict_member(X,
Args), strict_member(Y, Args).

constraint(X<Y, same_attribute(X,Y)).
constraint(X<Y, in_same_tuple(X,Y)).

strict_member(A, [B|C]) :- A == B.



strict_member(A, [B|C]) :- strict_member(A, C).

Step 4

Step 4 is the most complicated step. The way our implementation works is as follows:
for each association, the algorithm looks from between which tables the association
runs, and it adds rmodes for the "to" table (and constraints on these rmodes) in
accordance with the CDBL specifications (e.g., which arguments are fixed).  At this
point the algorithm also inspects the properties of the association and based on these
possibly adds look-ahead specifications. The algorithm is shown below.

Its results are 1) a set of rmodes; 2) a set of constraints; 3) a set of look-ahead
specifications.  The constraints can be seen as an array of constraints indexed on
tables.  For each table the constraint is initialised to false and whenever an association
in the CDBL specifications indicates that the table can be added if certain conditions
are fulfilled, the currently existing constraint on this table is weakened by extending it
disjunctively with the new conditions.  The “needs look-ahead” test is based on
inspection of multiplicities, as indicated earlier.  When adding an rmode or a look-
ahead specification, it is implicitly checked whether the rmode or look-ahead already
occurs (if it does, it is not added again).

The algorithm can be described as follows.

Global variables: rmodes: set of rmodes; initialised to the
empty set.
constraints: array of constraints indexed on tables

for each association Assoc between an attribute A1 of some
table T1 and an attribute A2 of some table T2 that goes in
the right direction:

add an rmode R for T2
the argument corresponding to A2 has mode +
the arguments occurring in a fix list for T2 have
mode #
all other arguments have mode –

constraints(T2) := constraints(T2) OR (the variable
occurring as A2 in T2 already occurs
as A1 in a T1 literal)

if T1 needs look-ahead then create look-ahead(T1, T2);
if T2 needs look-ahead then

add_rmodes+constraints+look-ahead for comparing
attributes of T2 with constants

else
add_rmodes+constraints for comparing attributes of

T2 with constants

add_rmodes+constraints[+look-ahead] for comparing attributes
of T with constants:
for each allowed operator op :

add rmode(+X op #X)
add a constraint stating that X must already occur



inside a T literal in the clause
[add look-ahead allowing test to be added immediately
after adding T]

The above translation algorithm was tested on a few test cases.  The results of these
experiments suggest that the bias specifications typically generated by the algorithm
are significantly more complex than the ones humans would usually write.  This
additional complexity is in part attributable to the mismatch between relational
concepts and logical concepts, as is explained in the next section.  It should be noted,
though, that the size of the hypothesis space does not increase due to the more
complex specifications and thus the complexity of the specification is not harmful to
Tilde's performance.

Although the translator described above was designed with the Tilde system in
mind, it is also usable for the Warmr ILP system, which uses the same bias
specification language as Tilde except for some minor differences (e.g., no target
argument is to be specified for the target table).

Comparing UML to traditional languages

If we want to compare the usefulness of our approach to existing means of bias
specification we have to take different criteria into account. Because one of our goals
is to widen the audience of ILP by improving its usability, some of these criteria will
be somewhat subjective. We will be looking at the ease of use of UML in the context
of ILP as well as the comprehensibility of Class Diagrams for non-experts. However
we will start our comparison with a more objective aspect which involves the contrast
between the actual bias (i.e. the hypothesis space) produced by UML and more
traditional languages.

The main difference in actual bias between UML and traditional declarative bias
languages is in how sharing of variables is controlled. In UML associations are used
to explicitly allow two arguments to share a variable. In other languages this is less
strict and any pair taken from a set of arguments with the same type can share a
variable. What effect this difference in restriction has, is best demonstrated by
considering the simplest case of three classes, a, b and c, connected by two
associations both referring to the same argument in the middle class b. Bias on the
basis of types would allow both a(X), b(X), c(X) as well as a(X), c(X),
whereas UML would only consider the former.

Assume either of the two associations is compulsory with respect to b (multiplicity
1 or 1..n on the side of b). In this case the two expressions are logically equivalent
and the bias is effectively the same. The use of UML has a slight preference, because
only one of the two alternatives is considered, in fact the one closer to our intuition.

If, on the other hand, both associations are optional (0..1 or 0..n), then the two
expressions are distinct and UML will only allow a(X), b(X), c(X). If
patterns such as a(X), c(X) should be considered we would have to explicitly
introduce a third association between a and c.



From the discussion above we can conclude that the use of associations is more
explicit than that of types. Associations can express all bias that can be expressed by
types, because each sharing of variables of the same type can be listed explicitly. In
the meantime more precise and restrictive forms of bias can be declared by stating
only the required associations, something which is hard to achieve by types only.

Because UML is such a versatile and widely-used tool for system modeling it
needs little arguing that the language is easy to use and comprehensible for technical
roles. Comprehensibility will however be lower for people with a non-technical
background. This view is supported by an empirical study at British Airways [1],
which reported that comprehensibility of Class Diagrams is high for ‘Analyst’,
‘Designer’ and ‘Programmer’ roles. One of these, the ‘Domain Expert’, is moderate at
understanding these diagrams through its exposure to OO-techniques when co-
operating with Analysts. In short we can say that UML is a comprehensible tool for
the intended audience, although some users may require a short introduction into the
syntax.

Because of its unified nature UML is slightly limited in expressiveness for ILP
purposes. The types of possible constraints are limited to relational and search bias,
whereas dedicated input languages can offer a wider range of engine-specific
constraints. Also, many declarative bias languages allow the expression of general
constraints on refinements with the full power of Prolog. Although many of the
desirable constraints can be derived from the relational bias, as was shown before, our
method is clearly restricted in terms of expressing general constraints.

Conclusion

In this paper we have introduced a method that facilitates the use of ILP in a KDD
setting. Our approach is centered around the use of UML as a declarative bias
language for a wide range of existing ILP engines. UML has a number of advantages
over existing languages that are specific to particular engines:

• easy to comprehend for a wide range of people
• close relation to relational database modeling
• industry standard for modeling since 1997
• generic specification language for range of ILP algorithms.

Of course the last advantage only holds with sufficient support from the different
engines (currently three). However, UML clearly has inherent features, which make it
a good candidate for a common declarative bias language.

Because UML can be seen as a common denominator of a range of bias
specification languages, it can not be expected to cover every single construct in a
particular language. In order to be able to use the full functionality of an engine the
native language will still be necessary. The usage of UML will be attractive in those
cases where functionality is required, which is shared by most engines. Typically our
approach is preferred for business analysts with a clear understanding of the domain



at hand, who have had some minimal training in (database) modeling and inductive
techniques and intend to apply a range of tools for comparison.

CDBL was intended as an intermediate, but common data format, much in the
same way as byte code for the Java programming language. Because of its textual
nature however, the language has become more important in practice. CDBL
descriptions are easier to edit and read by Prolog programs, causing it to become a
good option for exchange of bias between different engines. Because of this wider use
of CDBL, we have tried to make the syntax simple and readable.
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