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Abstract. In this paper we consider data where examples are not only
labeled in the classical sense (positive or negative), but also have costs as-
sociated with them. In this sense, each example has two target attributes,
and we aim to find clearly defined subsets of the data where the values
of these two targets have an unusual distribution. In other words, we
are focusing on a Subgroup Discovery task over somewhat unusual data,
and investigate possible quality measures that take into account both
the binary as well as the cost target. In defining such quality measures,
we aim to produce interpretable valuation of subgroups, such that data
analysts can directly value the findings, and relate these to monetary
gains or losses. Our work is particularly relevant in the domain of health
care fraud detection. In this data, the binary target identifies the patients
of a specific medical practitioner under investigation, whereas the cost
target specifies how much money is spent on each patient. When looking
for clear specifications of differences in claim behavior, we clearly need
to take into account both the ‘positive’ examples (patients of the practi-
tioner) and ‘negative’ examples (other patients), as well as information
about costs of all patients. A typical subgroup will now list a number of
treatments, and how the patients of our practitioner differ in both the
prevalence of the treatments as well as the associated costs. An additional
angle considered in this paper is the recently proposed Local Subgroup
Discovery, where subgroups are judged according to the difference with
a local reference group, rather than the entire dataset. We show how the
cost-based analysis of data specifically fits this local focus.

1 Introduction

This paper is about data that involves a binary label for each example, as well as
a cost. The motivation comes from a real-life problem where we are interested in
benchmarking (comparing) the claim behavior of medical practitioners. When
a patient visits a medical practitioner, the practitioner charges an amount of
money, corresponding to the treatment the patient received, to a health insur-
ance company. Several parties are involved in this treatment, each with its own
set of knowledge. The patient knows which treatments are performed, but he
is unaware of the communication between the practitioner and the insurance
company. The insurance company knows which treatments are claimed by the



practitioner, but it is unaware of what exactly happened when the patient vis-
ited the practitioner’s office. The practitioner is the only party that has both
sets of information: he knows what treatments he performed with this patient,
and he knows what treatments he claimed at the insurance company. Because
of this information advantage, a malevolent practitioner is in a unique position
that gives leeway to inefficient claim behavior or even fraud.

Detecting fraud on this level is very interesting to the insurance company –
much more so than fraud on the level of individual patients – since the com-
mercial implications are substantial. Hence there is a market for a data mining
solution to identify unusual claiming patterns that have a substantial economical
impact. The problem of identifying interesting patterns in claim behavior is es-
sentially an unsupervised learning problem. We have no claims that are labeled
as interesting beforehand. The approach we take is to single out a practitioner
and compare his claim behavior with the claim behavior of other practitioners.
The data we consider describes patients and practitioners. A single record sum-
marizes the care a patient received during a certain period. We are interested in
finding patient groups (patterns), that describe the difference between a single
medical practitioner and its peers. In other words, we would like to develop a
data mining algorithm, of which the output would be: patients that are in sub-
group S occur much more frequent for this medical practitioner, and indicate
a difference with other practitioners. The task of identifying such interesting
subgroups is known as Subgroup Discovery [5], and also as Emerging Pattern
mining [2], and Contrast Set mining [1].

We are interested in patterns that distinguish one practitioner from the oth-
ers. In order to find such patterns, we need quality measures to describe how
‘interesting’ a pattern is. We would like the quality measure to capture the dis-
tributional difference between one practitioner and the others: the higher the
distributional difference, the more interesting a pattern is. Secondly, we are in-
terested in including costs into the quality measure. The main motivation is
that in our application, subgroups involving more money are more interesting.
Also, a monetary-valued quality value for each subgroup greatly improves the
interpretability of a subgroup, because the measure itself has a monetary value.
In this paper we will describe how to take costs into account when calculating
quality measures. Each patient is ‘labeled’ by a monetary value – in our ap-
plication this is the total costs spent on treatments during a specific period –
and the quality measures we develop use these monetary values. As a result,
the subgroups we find should be easier to interpret by domain experts, since the
groups have an associated value in a commodity the experts understand.

2 Preliminaries

Throughout this paper we assume this dataset D with N examples (typically
patients). Each row can be seen as a (h + 2)-dimensional vector of the form
x = {a1, .., ah, t, c}. Hence, we can view our dataset as an N × (h + 2) matrix,
where each example is stored as a row xi ∈ D. We call ai = {ai1, .., aih} the



attributes of the ith example xi. The attributes are taken from an unspecified
domain A. The last two elements of each row are the targets. The first target, t,
is binary. Its values are set by singling out a medical practitioner. This t-vector
then indicates if a patient visited a medical practitioner (a positive example),
or not (a negative one). The other target, c, indicates a monetary value. In our
application this monetary value indicates the total costs spent on treatments,
per year. For other applications c could indicate the profit or the per-customer
value. Just like for the attributes, we will refer to the target values of a specific
record by superscript: ti and ci are the targets of example xi.

The goal of our approach is to find differences between the singled-out med-
ical practitioner (positive examples) and the rest. Simultaneously, the difference
should constitute a considerable amount of money; the more money involved,
the better. For this purpose the second target vector c is used. These differences
are described by subgroups. A subgroup can be seen as a bag of examples, it can
be any subset S of the dataset S ⊆ D. We describe how interesting a subgroup
is with the use of a quality measure. A quality measure q : 2D → R is a function
assigning a numeric value to any subgroup. Generally, the larger the subgroup
is, the better (very small subgroups are usually not preferred). Also, the bigger
the distributional difference, the better. In our case, because we have two target
vectors, this distributional difference can be measured in terms of the binary
target vector t (the higher the frequency of t = 1 in the subgroup, the better),
and the distributional difference can also be measured in the monetary-valued
target vector c (the higher the values for c within the subgroup, the better). The
quality measure combines these properties of interestingness in a single numeric
value.

In traditional Subgroup Discovery, there is only one binary target attribute
t. We denote the set of examples for which t is true (the positives) by T , and
the set of examples for which t is false (the negatives) by F . When we consider
a particular subgroup S, we denote its complement by ¬S. In this setting we
denote the true/false positives/negatives in the traditional way: TP = T ∩ S,
FP = F ∩S, FN = T ∩¬S, and TN = F ∩¬S. For any subset of examples X ⊆
D, we let c̄X denote the mean cost of the examples in X: c̄X =

∑
xi∈X c

i/|X|,
where |X| is the cardinality of the set X.

2.1 The local subgroup discovery task

To deal with locality, in a previous publication we introduced the Local Sub-
group Discovery (LSD) task [3]. The idea is to “zoom in” on a part of the data
set, and detect interesting subgroups locally. In our application, we can think of
the patient population as if they are distributed among different patient groups
(for example one group could be patients having a type of cancer). Such a co-
herent group of patients on which we zoom in is called a reference group. LSD
is a distance-based approach to find subgroups and reference groups, based on
prototypes. A prototype can be any point in attribute space x ∈ A. The distance-
based subgroup Sσ based on x for parameter σ ∈ N, consists of the σ nearest



Table 1. The counts cross table and the costs cross table

T F

S TP FP
¬S FN TN

T F

S cS∩T cS∩F

¬S c¬S∩T c¬S∩F

neighbors of x in D. The reference group Rρ based on the same x for parameter
ρ ∈ N s.t. ρ ≥ σ, consists of the ρ nearest neighbors of x in D.

The goal of LSD is to find subgroups Sσ ⊆ Rρ for which the target distribu-
tion is different from the target distribution in the reference group. The reason
for zooming in on a reference group is twofold. On the one hand, this allows
us to provide information about the neighborhood of a found subgroup. On the
other hand, it accounts for inhomogeneities in the dataset. The idea behind that
is that Rρ forms a region in input space where the target distribution is different
from that distribution over the whole dataset. Subgroups that are interesting to
report are not these reference groups: they are simply groups of patients sharing
a disease that is relatively expensive to treat. The interesting subgroups from a
fraud detection point of view, are those subgroups that represent a deviation in
target distribution relative to their peers: we want to find subgroups Sσ ⊆ Rρ in
which the target distribution is different from the distribution in the reference
group.

We write S(x, σ, ρ) for the subgroup Sσ in a reference group Rρ, which we
call a reference-based subgroup. The prototype can be seen as the center of this
subgroup, and as the center of the reference group encompassing the subgroup.
A quality measure calculated for a reference-based subgroup considers only ex-
amples inside the reference group.

3 Quality measures

The quality measures we consider are defined in terms of two cross tables, both
depicted in Table 1. The cross table on the left is common in traditional Subgroup
Discovery. The cross table on the right is concerned with the mean costs for each
of the categories. Our quality measures should satisfy the following criteria:

– in the first cross table, the higher the numbers on the diagonal (TP+TN)
are, the more interesting the subgroup is;

– in the second cross table, the higher the mean cost value in the true positive
cell cS∩T is, relative to those values in the other cells, the more interesting
a subgroup is.

Furthermore, it would be desirable if the value of the quality measure has a
direct interpretation in terms of money. In Sections 3.1-3.3 we introduce quality
measures satisfying these criteria, but before that we will shortly discuss why a
straightforward Subgroup Discovery approach does not suffice.



t = { + , − , − , − , + , − , + , + , + , − , − , − }
c = { 1000, 2000, 2000, 1250, 2000, 3000, 200, 200, 200, 200, 200, 200 }

c ∗ t = { 1000, 0 , 0 , 0 , 2000, 0 , 200, 200, 200, 0 , 0 , 0 }
↑
σ

Fig. 1. A dataset of twelve examples with a subgroup of six examples indicated.

A naive way of dealing with the two targets in our dataset, is to multiply
t by c for each observation, and use these new values as one numeric target
variable of a traditional Subgroup Discovery run. By taking the difference in
means between the subgroup and the mean of the data, the quality measure
has a monetary value. Consider the dataset in Figure 1. The first 6 examples
(up to σ) belong to the subgroup, and the other examples do not. Computing
the difference in means for c · t, the value of this naive quality measure would
be 3000/6− 3600/12 = 200 (where we are comparing the subgroup mean with the
mean of the total c · t column).

The disadvantage of this measure, is that the value of this monetary value
of 200 does not have a direct meaningful interpretation: it does not directly
relate to the amount of money that is present ‘more’ in the subgroup, or that
could be recovered. But more importantly, the positive quality value for this
subgroup is misleading. When we are looking for high average values for our
target, this suggests that there is somehow more money involved than expected,
but when we take a look at this subgroup, there is not more money involved
for the positive examples than for the negative examples. In our application,
suppose the reference group (12 examples) would indicate diabetes patients.
The subgroup indicates patients receiving expensive diabetes treatments, and
the rest of the reference group indicates patients receiving inexpensive diabetes
treatments. A low number of true positives (lower than expected), would mean
that there are less diabetes patients present at this practitioner than at other
practitioners. Also the practitioner claims less money for diabetes patients than
other practitioners do (the costs of the true positive patients is less than the false
positives). Since overall the practitioner is claiming less money than expected,
the quality measure should indicate this, but for this measure the positive quality
value of 200 suggests more money than expected is claimed. The measure based
on the average value of c · t is too much biased towards regions with high values
for c only, and its quality value is not interpretable at all.

3.1 Measures weighting counts by costs

When the emphasis of the measure should still be on the deviation in observed
counts (rather than costs), the following measures can be used. The idea is
to weight the deviation in counts in the true positive cell of the counts cross



table. Such a positive deviation (so observing more true positives than expected),
will be more interesting if more money is involved in those true positives. The
measures we propose weight this deviation by costs.

CWTPD(S) =

(
TP − 1

N
(TP + FP )(TP + FN)

)
· cS∩T (1)

This measure is called the Cost-Weighted True Positive Deviation (CWTPD).
The first of the two factors in this equation is the deviation (in counts) within the
subgroup from the expected value. This part is similar to the WRAcc measure [4]
for binary targets. Only here the deviation is measured in number of observations
instead of fraction of the whole dataset, as the WRAcc measure does. This
deviation is then multiplied by the average costs of true positives. Hence the
measure can be interpreted as: difference in counts × costs involved per count =
total costs involved. The big advantage of this definition is that it has a direct
interpretation in terms of money. The disadvantage of this measure, especially
for the local subgroup discovery task, is that it does not take the costs outside
the subgroup into account. It could be that the costs in the reference group
outside the subgroup are also high.

The measure following equation 2 eschews this disadvantage, by compensat-
ing in the second factor with the costs outside the subgroup:

Relative CWTPD(S) =

(
TP − 1

N
(TP + FP )(TP + FN)

)
· (cS∩T − c¬S)

(2)
This quality measure is called the Relative Cost-Weighted True Positive De-

viation (Relative CWTPD). In our application, the measure can be interpreted
as the amount of money that would be claimed less if the cross table of counts
would be homogeneous. This can be viewed as moving examples from the TP
cell into the FP cell until the expected costs cross table is obtained, where costs
of non-subgroup examples are estimated by c¬S .

The measure in Equation (2) is very suitable for local subgroup discovery
because it searches for difference in counts and difference in costs between the
subgroup and the examples outside the subgroup simultaneously.

3.2 Measures based on cost difference

To find subgroups for which the mean costs of the target are different from the
negative examples, the Total Mean Cost difference between Classes (TMCC) (3)
can be used.

TMCC(S) = TP · (cS∩T − cS∩F ) (3)

This measure compares the mean costs of the positive examples with those of
the negative examples. Subgroups for which this difference is high are the most
interesting. To obtain a total amount (as a monetary value), the difference in
means is multiplied by the number of true positives.



t = { + , − , − , − , + , − , . . . }
c = { 2000, 1000, 1000, 1000, 2000, 1000, . . . }

↑
σ

Fig. 2. A dataset with indicated subgroup of six examples. The mean value for c is
higher for the positive examples than for the negative examples in the subgroup. This
leads to quality (2000− 1000) · 2 = 2000, computed with Equation (3).

When the number of false positives is very small, the estimate of cS∩F can
be based on too few examples. A more robust measure is obtained by using cS
instead:

TMC(S) = TP · (cS∩T − cS) (4)

This measure is called the Total Mean Cost difference (TMC).
The advantage of the TMCC and TMC quality measures is the interpretabil-

ity: the quality value corresponds directly to the amount of money that is in-
volved. The disadvantage for local subgroup discovery is that these measures do
not take the reference group into account at all. Figure 2 shows the calculation
of the quality measure. This subgroup will not be found with quality measure (1)
or (2) if the probability of the target being true is higher outside the subgroup
than inside the subgroup.

3.3 Measures based on the proportion of costs

The previous measures were detecting differences in one target vector, and weigh-
ing this distance with the other target vector. The following measure is based on
another approach: it considers the difference in distribution of total costs. We
can define a cross table of observed costs. This table can be obtained by simply
multiplying cells of the two basic cross tables about counts and costs:

T F
S

∑
xi∈S∩t c

i
∑
xi∈S∩F c

i

¬S
∑
xi∈¬S∩t c

i
∑
xi∈¬S∩F c

i

This quality measure operates on this cross table of observed total costs. It
is based on the proportion of costs per cell relative to the total costs within
the whole dataset. It does not take the size of the subgroup into account. We
can calculate the Costs−WRAcc measure (called WRAcc due to its similarity
to the WRAcc measure for a single binary target vector t). When we denote

cT =
∑N
i=1 c

i as the total costs in the dataset, the Proportional Costs Deviation
(PCD) measure can be calculated as follows:



PDC (S) =
1

cT

∑
xi∈S∩t

ci − 1

cT 2

∑
xi∈S

ci
∑
xi∈T

ci (5)

This measure can be interpreted as the fraction of costs that is observed
beyond expectation in the true positive cell, relative to the total costs in the
whole dataset.

In our application, suppose the subgroup indicates cancer patients. A value
of 0.1 would mean that in the true positive cell, the fraction of costs compared
to the whole data set is 10 % higher than expected. Because this interpretation
as a fraction of the total costs in the data set is rather difficult, a much more
intuitive measure is the one that has a monetary value. This can be obtained by
multiplying equation (5) with the total costs:

MVPDC (S ) =
∑

xi∈S∩t

ci − 1

cT

∑
xi∈S

ci
∑
xi∈T

ci (6)

This quality measure is called the Monetary Valued Proportional Costs De-
viation (MVPCD). This monetary value can be interpreted as the amount of
money that is observed beyond expectation in the true positive cell of the total
costs cross table, if the total costs distribution would be the same for the posi-
tives and negatives. The higher the value of the measure, the more interesting a
subgroup is. In our example of cancer patients, a value of 100, 000 would mean
that the total amount spent on cancer patients by the target hospital is 100, 000
more than expected. The advantage of this measure is that this measure can
detect both deviations in average costs in the subgroup as well as deviations in
counts. A disadvantage can be that the calculation of the expected value depends
on the total costs distribution of points in T . In our example of the subgroup of
cancer patients, it can be that the cancer patients are not more present in this
hospital, and also cancer patients are not more expensive than cancer patients
at other hospitals, but due to the presence of ‘cheap’ patients (with a relative
low value for c) outside the subgroup, the proportion of observed costs spent
on cancer patients can still be higher than expected. The fact that the costs
outside the subgroup also play a role in calculating the expected value can cause
misinterpretation.

4 Experiments and results

In this section we show how the quality measures are used to detect interesting
local subgroups in a real-world application. Our health care application con-
cerns fraud amongst dentists. Each patient is represented by a binary vector of
treatments that the patient received during a year. The dataset contains 980,350
patients and 542 treatment codes. As a distance measure between patients we use
the Hamming distance between the treatments they received. Note that because
of the discrete nature of the data, there are many duplicate examples (many pa-
tients with an identical combination of treatments). Additionally, the distance



Table 2. The observed counts cross table and the observed costs cross table, for the
subgroup found with the weighted costs measure

T F

S 8 77
¬S 0 101

T F

S 1, 619 697
¬S 0 686

of a point to different neighbors may be identical, which limits the number of
subgroups that need to be tested.

We select a dentist with a markedly high claiming profile, and define the
target vector t accordingly. The dentist is visited by 5, 567 patients (0.57% of
the total data set). The costs vector c is calculated by summing the costs spent
on the treatments that the patient received during the year.

4.1 Results with the Relative Cost-Weighted True Positive
Deviation

We start with results for quality measure (2). Because the Relative CWTPD
measure in equation 2 is very suitable for local subgroup discovery, where the
CWTPD measure from equation 1 is better suitable for normal subgroup discov-
ery. Within local subgroup discovery we can alter the reference group size, and
‘zoom in’ to different resolutions. The following subgroup is found at reference
group size 186, with a subgroup size of 85 patients. The prototype patient is
using the treatments:

{221153, C11, C12, D22, D24, D32, D33, D42, M20, M50}

Treatment C11 and C12 are regular consults, treatment M20 and M50 are den-
tal cleaning treatments, and treatment 22153, D22, D24, D33, and D42 are
orthodontist treatments performed by a dentist. Table 2 (left) shows the counts
within this part of the data set. When we observe the cross table with counts we
see that there are 8 patients that visit the target dentist, and none in the refer-
ence group (outside the subgroup). Patients within the subgroup have treatments
similar to the prototype, where patients outside the subgroup, but in the refer-
ence group, also use similar treatments, but use less, and use other treatments
as well. The table on the right shows the corresponding mean costs. From the
two tables we can see that the number of true positives is higher than expected,
and the mean costs for observations in the true positive cell are also higher than
the mean costs within the other cells. The expected value for the number of true
positives is 3.66. This leads to a quality of (8 − 3.66) · (1, 619 − 686) = 4, 051
euros.

To further investigate the observations within the subgroup, and compare
them to the rest of the reference group, we observe Table 3, where the support
and costs of all frequent treatments in the reference group are compared. Only
treatments that have a support ≥ 0.1 are in the table, which means that the



Table 3. Prototypes and their support in the subgroup, and their support in the refer-
ence group excluding the subgroup. The codes indicate treatments that were charged
for a patient, the supports indicate the fraction of patients receiving those treatments
respectively. The costs indicate the mean costs spent on each treatment.

Subgroup Prototype, Supports, and Costs

S1 prototype 221153 C11 C12 D22 D24 D32 D33 D42 M20 M50

S1 ∩ T 1.00 1.00 0.63 0.18 0.75 0.25 0.50 0.63 0.88 0.25
S1 0.78 1.00 0.44 0.05 0.31 0.22 0.31 0.85 0.72 0.26

R1 \ S1 0.75 1.00 0.57 0.38 0.20 0.13 0.13 0.88 0.56 0.26
cS1∩T 169 37 17 175 197 90 131 233 46 5
cS1 85 32 12 80 42 73 49 224 29 7

cR1\S1
73 34 16 22 18 41 19 233 24 5

costs spent on the treatment are bigger than zero for more than 10 percent of
the patients in the reference group.

The first line in Table 3 corresponds to these treatments. The next lines
correspond to the supports in the set S1 ∩ T (the true positives), the support
in S1 and the support in R1 \ S1 (the patients outside the subgroup, but in the
reference group). For each treatment, we can also calculate the mean costs in
these sets. These numbers are in the last three lines of Table 3. For this subgroup
we can conclude that more orthodontist treatments are claimed (codes D22, D24,
D32, D33) within the subgroup compared to the rest of the reference group. From
the mean costs numbers, we can conclude that the D22 and D24 treatments are
interesting for this subgroup, because of the high costs of those treatments for
the true positives.

4.2 Detecting outliers

When restricting the reference group to very small sizes it is possible to find
very small groups of outliers, or even find individual outliers as a subgroup. For
example, with a reference group size ρ of 13, the best subgroup found for this
value of ρ has only one observation with costs of 3779 euros, compared to the
mean costs of 1073 euros for its nearest neighbors. The quality value for this
individual outlier (again using the Relative CWTPD measure in Equation 2) is
(1− 1/13)(3779− 1073) = 2, 498 euros.

4.3 Measure based on cost difference

With the TMCC quality measure, using Equation (3), subgroup S2 was found
for the following prototype:

{A10, C11, C12, C13, E01, E13, E40, H30, M50, M55, R25, R31, R74, V11,
V12, V13, V14, V20, V21, V40, V60, V80, X10, X21},



Table 4. The observed count cross table and the observed costs cross table, for the
subgroup found with the costs wracc measure

T F

S 87 1236
¬S 110 4390

T F

S 427 347
¬S 411 307

Table 5. Prototypes and their support in the subgroup, and their support in the refer-
ence group excluding the subgroup. The codes indicate treatments that were charged
for a patient, the supports indicate the fraction of patients receiving those treatments
respectively. The costs indicate the mean costs spent on each treatment.

Subgroup Prototype, Supports, and Costs

S3 prototype C11 C12 M55 V12 V13 V14 V21 V40 V60 X10 X21

S3 ∩ T 1.00 0.93 0.97 0.85 0.31 0.49 0.99 0.47 0.84 0.89 0.74
S3 1.00 0.90 0.99 0.85 0.21 0.54 0.99 0.49 0.56 0.91 0.29

R3 \ S3 1.00 0.86 0.96 0.82 0.21 0.35 0.97 0.28 0.29 0.87 0.17
cS3∩T 37 29 58 51 19 44 69 4 24 21 36
cS3 36 25 59 47 16 46 52 5 13 22 14

cR3\S3
35 24 55 45 16 28 46 3 7 21 9

which is a single patient using a combination of many treatments. Patients within
the subgroup have a maximum distance of 7 treatments to this prototype. The
mean costs of the true positives, c{S2∩T}, is 983 euros, and the mean costs of
patients for which the target is false is 773 euros. In the set S ∩ T there are 89
patients, while in the set S ∩ F there are 592 patients. This leads to a quality
value of 18, 665 euros. When we investigate the subgroup, the main difference in
costs are due to the treatments R25 (a metal crown with porcelain on top), for
which the difference between the target and non-target points is 66 euros, V21
(polishing a filling) with a difference of 31 euros, and V60 (a pulpa-coverage),
and X21 (X-ray) each with a difference of 21 euros. With this measure we were
also able to mine individual outliers: this comes down to a k-nearest neighbor
outlier detection algorithm for which each target point is compared to the mean
value of its k nearest neighbors.

4.4 Measure based on the proportion of costs

We calculate the MVPCD measure (6). The best subgroup for a maximum ref-
erence group size ρ of 6,000, has a quality of 16, 476. The optimal quality value
is found for a σ of 1,323 and a ρ of 5, 823. Table 5 shows the difference in treat-
ments and treatment costs, to get an idea what is the difference between the
subgroup and the rest of the reference group.

Patients in this reference group are using the following treatments: C11 and
C12 are regular consults, M55 is a dental cleaning, V 12, V 13, and V 14 stand for



2-hedral, 3-hedral, and 4-hedral fillings. V 40 is for polishing amalgam fillings,
V 60 for a pulpa-covering, and X10 and X21 for an inexpensive and expensive
X-ray respectively. From Table 5, we can see that the main difference between
the subgroup and the reference group are the treatments V21 (costs for polishing
a filling), and X21 (costs for an expensive X-ray picture). We can conclude that
for patients using standard consults, a dental cleaning, and a few fillings, the
treatments V21 and X21 are claimed much more often at this dentist. In total,
for this patient group, an amount of 16, 476 euros is claimed more than expected.

5 Conclusion

In this paper, we have presented several suggestions for quality measures that
involve both binary labels and costs. We demonstrated their effectiveness in
producing interesting and actionable patterns in a fraud detection application.
As is common in Subgroup Discovery, more than one definition of interestingness
can be conceived, and it is up to the end user to determine which measure best
fits the specific analysis. We have proposed several measures, and explained the
specific benefits of each.
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