
Building Classifiers from Pattern Teams

Arno Knobbe1 and Joris Valkonet2

1 LIACS, Leiden University, the Netherlands
a.knobbe@kiminkii.com

2 Avanade Nederland, the Netherlands
jorisv@avanade.com

Abstract. Over the last decade, a wealth of new pattern discovery
methods has been developed. Most methods implicitly assume that the
result of the method is a collection of half-products: further processing
is needed to turn the set of patterns into an actionable global model,
for example a classifier or regression model. Global modeling in this
setting entails combining patterns effectively and dealing with possible
redundancy or conflicts between the patterns reported. This paper is
concerned with the question of turning sets of interesting patterns into
classifiers. Specifically, we approach the problem of building classifiers
from pattern teams [12], a previously presented framework for select-
ing small but highly effective subsets of patterns. We not only describe
how a single classifier can be constructed from the final pattern team,
but also how this procedure can be applied in a wrapper-approach to
judge the quality of candidate pattern teams. Involving classifiers in the
pattern team discovery process makes sense, because accurate classifiers
require informative and non-redundant patterns (features). A number
of classification procedures is considered, and compared experimentally.
Furthermore, we demonstrate how specific properties of pattern teams,
such as the relevance of each member pattern, can be exploited to find
global models more efficiently.

1 Introduction

This paper is concerned with the construction of classifiers from sets of previ-
ously discovered patterns, more specifically, from pattern teams [12, 11]: small
collections of predictive patterns that show little redundancy. Why are we inter-
ested in building classifiers from pattern teams? The obvious reason is simply for
the sake of obtaining the classifier itself. Collections of patterns (such as rules)
may be interesting because they represent relevant fragments of knowledge ob-
tained from the data, but they are hard to use in a predictive setting because of
overlapping or conflicting conclusions associated with each pattern. Therefore,
it is attractive to have a procedure that resolves these conflicts and decides how
the patterns collectively lead to a single prediction. This is especially relevant in
domains where the initial discovery of patterns is essential, such as in relational
data or graphs. A second, more important motivation for this work is related to
the discovery of pattern teams. As was demonstrated in [12], one of the most
fruitful methods of selecting pattern teams is by means of a wrapper [7, 14]. This
means that a given classification procedure is employed to judge the predictive
power of candidate pattern subsets, and the pattern team that is returned is

simply the subset that leads to the best performing classifier. Predictive power
is a good measure in this setting because it nicely balances a number of de-
sirable qualities of pattern teams. Specifically, predictive power to some degree
promotes independence of patterns (and thus suppresses redundancy), while at
the same time encouraging the utility of the individual patterns with respect to
the classification task. It is for this second motivation that we will be considering
different classes of classifiers, and comparing their performance, even though the
end product of the process may often not be the actual classifier, but rather the
associated pattern team.

Our work fits in the recently published LeGo (from Local pattErns to Global
mOdels) framework [10]. This framework suggest building global models by first
discovering potentially large collections of patterns. These patterns are then
filtered for redundancy and relevance in a pattern selection phase and finally
combined into a global (often predictive) model. The framework dictates that
the three stages are relatively independent. Specifically, the initial pattern dis-
covery phase could be instantiated by any number of local pattern discovery
algorithms, without affecting the subsequent stages. When we are interested in
a final predictive model however, it makes sense to choose a pattern discov-
ery paradigm that produces supervised patterns, such as Subgroup Discovery or
Correlated Pattern Mining [2, 9, 15]. An important notion within LeGo is that
patterns are considered as binary features: an example is either covered by a
pattern or not. The actual syntactic structure of the patterns is ignored, which
makes the framework independent of the selected pattern language (itemsets,
fragments of molecules, relational structures, ...). In this interpretation, pattern
discovery becomes a form of feature construction, and pattern selection can be
thought of as feature selection. More importantly, the binary feature interpreta-
tion means that in the global modeling phase, any supervised machine learning
algorithm may be employed to combine the patterns (features) into a single
model.

Although we can state the problem of building classifiers from pattern teams
as a general supervised machine learning problem, the problem has a number
of specific properties that justify the attention we give it. First of all, we are
dealing with binary features, and a candidate team has only a small number k of
these features. Hence, building a classifier for a given team equates to assigning a
prediction to each of the 2k possible combinations of binary values. Furthermore,
we know by definition that all patterns in a team are required to be relevant,
which in theory limits possible classifiers to those that meaningfully involve all
k features. Because of these properties, we will be considering two fairly simple
classes of classifiers, which represent two ends of the spectrum of expressive
power. On the expressive end, we have Decision Table Majority (DTM) classifiers
[13, 17], which basically list all contingencies, and assign the associated majority
class that is observed in the data. Clearly, this class of classifiers is prone to
overfitting, and only works because of the low dimensionality of the problem at
hand. On the other end, we have linear classifiers [6, 3], which are arguably the

least expressive models imaginable that still involve all features. These classifiers
can be expected to trade off expressiveness for generalisation power.

The main contributions of this paper are as follows:

– Defining the task of building classifiers from pattern teams (or in fact pattern
sets in general) as a generic induction task over the binary features made
up by the patterns. As we pointed out in [10], passing patterns to arbitrary
classification procedures is not entirely novel. However, in the context of
pattern teams there are specific considerations that lead to new research
questions and solutions.

– Experimentally providing answers to two important questions related to the
successful application of the presented approach:
• What choice of classifier achieves the highest predictive accuracy, and

consequently leads to the most informative pattern team? Specifically, we
compare a number of classes of classifiers that range in representational
power.

• What choice of pattern selection measure leads to optimal results? We
consider both wrapper and filter-based quality measures.

– Showing how three unique properties of pattern teams can be exploited to
arrive at relatively efficient solutions for finding pattern teams. These prop-
erties relate to patterns being binary in nature, pattern teams being concise,
and finally, to pattern teams being non-redundant, requiring each pattern to
be relevant.

– Showing experimentally that classifiers built from pattern teams can compete
with more traditional classification techniques, and furthermore, that they
outperform classifiers induced on the whole pattern set.

In the next section, we introduce notation and terminology, and formally
define the problem addressed, as well as the different classes of classifiers consid-
ered. In Section 3, we consider one of the classifiers in particular, and show how
specific properties of pattern teams may be exploited to arrive at an efficient im-
plementation of this classifier. In Section 4, we experimentally compare different
combinations of quality measures for pattern teams and classifiers. Furthermore,
we compare the resulting classifiers with the performance of existing classes of
classifiers. Finally, a discussion and conclusions are given in Section 5.

2 Preliminaries

We start by providing a number of basic definitions related to patterns and
pattern team discovery. We assume that our database d is a bag of labelled
objects i ∈ D, referred to as individuals, taken from a domain D. Furthermore,
there is a function l : d → {0, 1} that specifies the label of an individual. We
refer to the size of the database as N = |d|.

We assume nothing about the syntax of the pattern language, and treat a
pattern simply as a function p : D → {0, 1}. We will say that a pattern p covers
an individual i iff p(i) = 1. A subgroup S(d, p) implied by a pattern is now simply

the set of individuals i ∈ d that are covered by p: S(d, p) = {i ∈ d|p(i) = 1}.
For brevity we will omit the d from now on. s(p) = |S(p)| refers to the size of
the subgroup implied by p. Furthermore, we will use expressions like l(i) = 1
to denote patterns related to the label of individuals, such that S(l(i) = 1) for
example denotes the set of positive cases.

When talking about sets of patterns P = {p1, . . . , pk} of size k, an individual
may be covered by some patterns in P and not by others. In order to represent
such contingencies, we introduce codes c ∈ {0, 1}k. Clearly, for a set of k patterns,
there are 2k possible different codes. The subgroup implied by a given pattern
set P and a code c is defined by

S(P, c) = {i ∈ d|p1(i) = c1, . . . , pk(i) = ck}. (1)

s(P, c) = |S(P, c)| is the size of the subgroup implied by P and c.
As mentioned, we assume that an initial mining process has produced a set

of interesting patterns P. The elements of P have been selected on the basis
of their individual merits (using some quality measure such as frequency, χ2, or
novelty). In the subsequent pattern team discovery phase, we try to find a subset
of P that is informative and non-redundant at the same time. In order to judge
candidate pattern sets and select the optimal pattern team, we define a quality
measure for pattern sets that promotes important qualities of a pattern team.
[12] presents a number of useful quality measures.

Definition 1 (Quality Measure). A quality measure for pattern sets is a
function Φd : 2P → R, that computes a unique numeric value for a pattern
set P , given a database d.

Definition 2 (Pattern Team Discovery). Given a set of interesting patterns
P, and a quality measure for pattern sets Φd : 2P → R, find a pattern set P ⊆ P
of size k such that Φd(P) ≥ Φd(Q) for all Q ⊆ P of size k.

Finding a pattern team of size k for any given quality measure Φd poten-
tially involves the consideration of (n

k) subsets of the set of interesting patterns
P, where n = |P|. In fact, Mielikäinen et al. [16] show that the general Pattern
Team Discovery problem is NP-hard by relating it to the set-covering problem,
making it infeasible for all but small values of k. Fortunately, for specific quality
measures, it is possible to find optimal pattern sets efficiently, or to find approx-
imations that can be shown to perform reasonably well. For example, in [11], we
provide some algorithms for joint entropy.

Example 1. Let us consider a database of 7 molecules labelled a, ..., g, and
assume we have discovered the following four promising patterns.

id p1 p2 p3 p4 class
a 0 0 0 1 0
b 1 0 0 1 0
c 0 1 0 0 0
d 0 0 1 0 1
e 1 0 0 0 1
f 1 1 1 1 1
g 1 1 0 1 1

Clearly, S(p1) = {b, e, f, g} and s(p1) = 4. Assume we are interested in
pattern teams of size k = 2. This leads to the following possible codes: (0,0),
(0,1), (1,0), and (1,1). The pattern set P = {p1, p2} separates the database
into the following four subgroups: S(P, (0, 0)) = {a, d}, S(P, (0, 1)) = {c},
S(P, (1, 0)) = {b, e}, and S(P, (1, 1)) = {f, g}. There are six candidate pattern
sets that need to be considered: {p1, p2}, {p1, p3}, {p1, p4}, {p2, p3}, {p2, p4},
and {p3, p4}.

2.1 Classifiers

Once a pattern team P has been selected, it can be turned into a global model
using a classifier. In the context of this paper, we define a classifier as a function
f : {0, 1}k → {0, 1}. Note that f assigns a 0 or 1 to each of the 2k possible
codes. We can completely characterise a classifier by listing the 2k assignments.
Such a vector v ∈ {0, 1}2k

will be referred to as a configuration. There are 22k

distinct configurations for a given k, and hence 22k

possible classifiers. Because
f will typically depend on the set of patterns P , we will often write fP . If we
apply a classifier to an individual i in the database, we will simply write fP (i)
to denote the result of f applied to the binary vector (p1(i), . . . , pk(i)).

In this paper, we do not only employ classifiers in order to turn the final
pattern team into a predictive model. Rather, we involve the classifier in the
Pattern Team Discovery phase, by embedding it in a wrapper approach [7, 14].
This means that we will be using the predictive accuracy of a classifier induced
from a candidate pattern set P to judge the quality of P . There are various ways
of estimating the predictive accuracy of a classifier (e.g. cross-validation), but
for reasons of efficiency, we will simply be using its purity : the quality of the
classifier on the training set. Assuming we have selected a process for inducing
a classifier fP from a given set P , we can simply define our quality measure as
follows:

Φ(P) = |{i ∈ d|fP (i) = l(i)}|/N (2)

Linear classifiers The simplest classifier we will be considering is the linear
classifier. A linear classifier determines its prediction by computing the weighted
sum of the features involved. If this sum plus a bias value b is positive, then the
prediction is 1, and 0 otherwise. This binary decision can be interpreted as a

hyperplane in the feature space.

fP (c) =
{

1 if
∑

j(wj · cj) + b ≥ 0
0 otherwise

(3)

The weights wj can be positive or negative, and are typically determined from
the data by means of some optimisation procedure. A well-known procedure
for computing such weights is the Support Vector Machine (SVM) [3, 18]. This
procedure attempts to find a hyperplane (i.e. weight vector) that separates the
positive (1) from the negative (0) cases, such that the margin between these
classes is optimised. For datasets that cannot be separated perfectly, an opti-
misation criterion that balances margin width and misclassification has been
defined. Because of this maximal margin (and the relatively simple model), the
SVM has shown good generalisation performance, and therefore good predic-
tive accuracy on unseen data. In order to induce a linear SVM, we employ the
relatively efficient Sequential Minimal Optimisation (SMO) procedure [18]. Al-
though SVMs, and SMO in particular are able to work with non-linear decision
boundaries by using non-linear kernels, we only use linear models in order to
obtain a classifier of low expressive power and to prevent overfitting.

Assuming the wrapper-approach, the quality of a pattern set P simply be-
comes the purity of the induced SVM fP,SV M , which we will refer to as SVMp:

SVMp(P) = |{i ∈ d|fP,SV M (i) = l(i)}|/N (4)

Apart from the wrapper approach, we will also consider an alternative quality
measure that uses properties of the hyperplane and its margin. If SVMs attempt
to optimise a margin-based function (for a given pattern set), it makes sense
to adopt this optimisation function for comparisons between pattern sets also.
In this setting, we will hence select the pattern team that leads to a set of
features that allows the widest margin. The following quality measure is hence
directly inspired by the usual SVM optimisation function [3]. The minus changes
the minimisation into maximisation for pattern sets. The first term is derived
from the margin-width, which is maximised. The second term is a penalty for
individuals that are misclassified.

SVMq(P) = −(
∑

j

(wj ·wj) + C
∑

i

εi) (5)

The SVM classifier combines the advantages of a relatively simple (and hence
general) model and margin maximisation. Unfortunately, this second goal comes
at a computational cost. It is fair to wonder whether the notion of margin max-
imisation actually provides any additional benefit in our specific setting of build-
ing classifiers from pattern teams. In order to test this, we consider an additional
linear classifier that simply optimises the purity (i.e. minimises the misclassifica-
tions on the training set), while ignoring any margin considerations. We simply
refer to this classifier as LC, with the associated purity-based quality measure
LCp. For now, we assume that we can compute such an optimal linear classifier

relatively efficiently. In Section 3, we will consider LC specifically, and provide a
method that effectively exploits a number of the peculiarities of pattern teams
to deal with this issue.

Decision Table Majority classifier The second class of classifiers considered
is the Decision Table Majority classifier [12, 13, 17], also known as a simple de-
cision table. The idea behind this classifier is to build from the pattern set a
contingency table for each possible code, and compute the relative frequency of
positive cases for each contingency. For contingencies that do not appear in the
database, the relative frequency of positive cases is based on that of the whole
database (i.e. the prior). An individual is now classified by computing its code,
and returning the majority class within the associated subgroup. This simple ap-
proach works surprisingly well, under two conditions: the features (i.e. patterns)
have a low cardinality, and the decision table should be based on a relatively
small number of features selected from a larger set by means of a wrapper [7].
These conditions clearly hold for our application. The following definition cap-
tures the workings of a DTM classifier. The function t computes a conditional
probability estimate for l(i) = 1 for a code c, given a set of patterns P :

tP (c) =

{
|S(P,c)∩S(l(i)=1)|

s(P,c) if s(P, c) > 0
s(l(i)=1)

N if s(P, c) = 0
(6)

fP,DTM (c) =
{

1 if tP (c) ≥ 1/2
0 otherwise (7)

Analogous to SVMp, we define the DTM-based quality measure as the purity of
the induced DTM classifier fP,DTM , which we will refer to as DTMp:

DTMp(P) = |{i ∈ d|fP,DTM (i) = l(i)}|/N (8)

Example 2. Consider again the database from Example 1. For pattern sets of
size k = 2, the 22 = 4 contingencies lead to 22k

= 16 configurations: (0,0,0,0),
(0,0,0,1), ..., (1,1,1,1), each of which forms a potential classifier. Consider the
pattern set P = {p1, p2} and the classifier (0,0,0,1), which classifies a molecule
as positive iff both p1 and p2 hold. Clearly, fP (a) = 0 and fP (g) = 1. The purity
of this classifier is

Φ(P) = |{a, b, c, f, g}|/7 = 5/7 ≈ 71.4%

The quality measure DTMp leads to the pattern team {p2, p4}, with the asso-
ciated classifier (1,0,0,1), which classifies positively iff p2 and p4 have the same
value. This classifier is 100% pure. The quality measure SVMp (and LCp) leads
to the pattern team {p1, p3}. The associated linear classifier is as follows

3· p1 + 4· p2 − 2 ≥ 0

which is equivalent to (0,1,1,1). This leads to a purity of 85.7%.

dimensions configurations linear decision functions hyperplanes relevant hyperplanes

1 4 4 1 1

2 16 14 6 4

3 256 104 51 36

4 65,536 1,882 940 768

5 4.29 · 109 94,572 47,285 43,040

6 1.84 · 1019 1.50 · 107 7,514,066

7 3.40 · 1038 8.38 · 109 4.19 · 109

Table 1. Numbers of hyperplanes.

3 Hyperplane Enumeration

In the previous section, the LC classifier was introduced as one of the possible
classifiers. There remains the issue of finding the optimal linear classifier effi-
ciently. In this section, we will present a method for doing so that exploits a
number of important characteristics of the pattern team setting. The first char-
acteristic is related to the small number of patterns found in a typical pattern
team. The second characteristic has to do with the binary nature of patterns.
Whereas in general, a linear classifier is defined as a linear hyperplane in Eu-
clidean space, in our application we only deal with examples from the space
{0, 1}k, which effectively reduces the number of candidate classifiers that need
to be considered.

Infinitely many different hyperplanes will map to a single linear decision
function. Two hyperplanes map to the same linear decision function if none
of the corners of the hypercube defined by the patterns lies between the two
hyperplanes. Therefore, it makes sense to only consider the finite number of
linear decision functions possible for a hypercube of given size k, rather than
using some time-consuming convergence process that attempts to find an optimal
hyperplane. If k is small, as is the case in our setting, this number of linear
decision functions may be reasonably small.

So how many unique linear decision functions actually exist for a given hy-
percube? This question has been addressed by Oswin Aichholzer [1]. In Table
1 (third column), we list the number of linear decision functions for k = 1 to
k = 7. For example, for k = 2, we see that there exist 22k

= 16 configurations,
14 out of which are linear. The two remaining configurations correspond to the
two instances of the XOR function, which are clearly not linearly separable.
The fourth column is concerned with the number of hyperplanes that need to
be considered as candidate linear classifiers. This number does not include the
two linear decision functions that lie outside the hypercube, and hence do not
actually decide between 0 and 1. Furthermore, for all pairs of decision functions
that swap 0’s and 1’s, we only need to consider one hyperplane. Hence, for h
hyperplanes, we have 2h+ 2 linear decision functions.

For a further reduction in the number of hyperplanes to consider, we use a
third property of pattern teams. By definition, we require each pattern in the

Fig. 1. Hyperplanes for k=3 (courtesy of O. Aichholzer).

team to contribute something to the decision. That is, we require a pattern to
be strongly relevant within the team: for at least one example in the dataset,
this is the only pattern in the team that decides between a positive and negative
prediction [14]. In terms of hyperplanes, a pattern is irrelevant if the hyperplane
is parallel to at least one of the sides of the hypercube3. Consider Figure 1, which
shows all hyperplanes (modulo rotation and mirroring) organised by the num-
ber of positive and negative contingencies (p:n). For example, the first diagram
a) shows the class of hyperplanes that has only a single positive contingency.
Clearly, the hyperplane is not parallel to any of the sides of the hypercube,
and hence all patterns are relevant. On the other hand, diagrams b), d) and
g) have one, two and one irrelevant patterns, respectively. It should be noted
that in theory the (optimal) pattern team could contain only a single strongly
relevant pattern. One could argue that in this case, only a single pattern should
be returned, and hence all candidate hyperplanes should be considered. If on the
other hand, one is strictly interested in teams of size k, then only the relevant
hyperplanes need to be considered, with a moderate advantage in computation
time.

In the fifth column of Table 1 (our contribution), we list the number of hyper-
planes that do not contain any irrelevant patterns.4 As can be seen from Table
1, both the number of hyperplanes and the number of relevant hyperplanes grow
rapidly with increasing k. These numbers are however considerably smaller than
the total number of possible classifiers (configurations). Assuming that pattern
teams are typically very small collections of patterns, just enumerating and test-
ing all (relevant) hyperplanes may be feasible, and preferable over computing

3 To be more precise, a pattern is irrelevant if at least one of the associated hyperplanes
is parallel to at least one of the sides of the hypercube.

4 Lists of all hyperplanes and relevant hyperplanes for k ≤ 5 can be obtained from the
authors, in flat file or XML.

dimensions hyperplanes relevant hyperplanes SMO, WDBC SMO, Ionosphere

2 6 4 4,218 15,149

3 51 36 29,141 6,610

4 940 768 10,704 56,026

5 47,285 43,040 24,109 44,245

6 7,514,066 20,114 39,522

Table 2. Relevant hyperplanes compared to typical number of iterations for two UCI
datasets.

hyperplanes using some convergence process such as SMO. We have performed
a number of experiments to test typical numbers of iterations (and hence scans
of the data) involved with the SVM implementation we have been using. Table
2 compares the number of table scans needed with the proposed enumeration
approach compared to SVMs computed on two UCI datasets (see next section
on experiments). As can be seen, hyperplane enumeration is advantageous for
k ≤ 4, which is a small but very reasonable number for our pattern team setting.

4 Experiments

In this section, we present a number of experiments that examine the effective-
ness of the different classifiers and quality measures for pattern teams. We start
off by an informal demonstration of our method on a database of molecules. We
then proceed with a systematic comparison on a number of well-known datasets.
The presented methods have been implemented in the Safarii Data Mining envi-
ronment [9], which already features a Subgroup Discovery method for producing
the initial set of patterns, as well as the necessary pattern team machinery. The
system is able to find interesting patterns in complex data including graph and
multi-relational data. As a demonstration of our methods on such data, we now
consider the well-known Mutagenesis database [19]. This database describes 188
molecules falling in two classes, mutagenic (66.5%), and non-mutagenic. The
structural description consists of the atoms and the bonds that make up the
compound. In particular, the database consists of 3 tables that describe directly
the graphical structure of the molecule (molecule, atom, and bond). In the pat-
tern discovery phase, we look for fragments of the molecules that are indicative
of mutagenicity. Fragments were selected using the Novelty evaluation measure
(also known as weighted relative accuracy). From the initial set of 50 fragments
discovered, we select pattern teams of size 3. Using the DTMp quality measure,
the following pattern team is produced:

p1:

p2:

p3:

Each so-called selection graph represents a fragment, where the graphical
structure of the graph represents constraints on the molecules in terms of atoms
and bonds. We are using the object identity interpretation, which means that
different nodes in the selection graph are required to map to different parts
(atoms, bonds) of the molecule. Therefore, for example, p3 should be interpreted
as molecules containing at least three oxygen-atoms. Note that because of the
structural nature of the data, standard attribute-value systems cannot be applied
directly.

The patterns represents subgroups of the dataset of size 126, 58 and 88, with
novelties 0.054, −0.046 and 0.035, respectively. Note that p1 and p3 are pos-
itive indicators of mutagenicity, and p2 is negative. Although these fragments
appear to be relatively basic, further analysis shows that they represent impor-
tant classes of molecules. For example, the majority of molecules in p1 contain
a phenyl -group, which is an aromatic ring of six carbon atoms attached to the
remainder by a single bond. The carbon atom and aromatic bond (type = ‘7’)
mentioned in p1 apparently are enough to recognize such a functional group.
Further mining on p2 shows that most of these molecules are amines (contain
a nitrogen atom connected with three single bonds), and additionally contain
a nitroso-group (−N=O). Within most of the molecules in p3, the first oxygen
atom turns out to be part of a nitroso-group connected to an aromatic ring. The
location of the second oxygen is not specified, but it is connected via a double
bond (O=), as is the case in for example esters and ketones, but not in ethers and
alcohols (−O−). The third oxygen atom appears in many different roles in p3.
It is important to note that there is overlap between the three patterns, for ex-
ample because they either share an aromatic ring (p1 and p3) or a nitroso-group

(p2 and p3). Whereas the presence of a nitroso-group is a negative indicator for
mutagenicity (p2), in combination with an aromatic ring and more oxygen atoms
(p3), the molecules are more likely mutagenic. This interaction between patterns
demonstrates the usefulness of having classifiers built from pattern teams, as the
class of a molecule depends on its code based on the three patterns.

The three patterns lead to the following decision table (with supports for indi-
vidual contingencies indicated). The associated classifier has a purity of 74.5%.
For a cross-validated score, the process would have to be repeated of course,
resulting in slight variations in patterns and pattern teams produced.

p1 p2 p3 support class
0 0 0 22 1
0 0 1 21 1
0 1 0 15 0
0 1 1 4 0
1 0 0 47 1
1 0 1 40 1
1 1 0 16 0
1 1 1 23 1

The SVMq measure leads to the following linear classifier, with a purity of
72.3%. Note the negative weight of p2:

p1 − 0.96· p2 + 0.85· p3 + 0.83 ≥ 0

quality measure joint entropy BDeu DTMp SVMp SVMq LCp

classifier default DTM DTM SVM DTM SVM DTM SVM LC

Chess (KRvsKP) 52.0 81.2 92.8 80.3 92.9 89.7 90.4 77.4 92.7

Ionosphere 64.1 85.5 89.7 88.0 89.7 85.2 90.3 73.5 88.3

Pima 65.0 71.3 75.0 70.0 75.0 73.2 71.9 69.4 74.2

TicTacToe 65.3 66.3 72.4 62.6 72.2 70.7 72.8 68.0 71.1

WBCD 65.5 93.8 93.8 90.0 93.8 92.7 93.8 86.7 94.4

WDBC 62.0 85.4 94.4 93.5 94.7 94.5 94.5 88.8 92.4

Credit Screening 55.5 82.8 82.3 82.0 84.1 82.6 82.6 82.3 84.2

Table 3. Cross-validated results using Novelty.

In the following experiments, we compare the performance of the different
classifier classes in terms of their predictive accuracy. For our experiments, we
have selected a number of datasets from the well-known UCI repository. All se-
lected datasets have 2 classes. The initial set of patterns was produced by running
Subgroup Discovery using beam-search with moderate search parameters, such
that pattern sets of approximately 50 patterns were produced. Again, patterns
were selected using the Novelty evaluation measure. In order to obtain reliable

dataset default best pattern team SD + SVM J48 Neural Network PART

Chess (KRvsKP) 52.0 92.9 85.4 99.3 99.1 98.9

Ionosphere 64.1 90.3 84.6 89.7 90.3 90.0

Pima 65.0 75.0 68.9 71.2 74.3 74.2

TicTacToe 65.3 72.8 63.8 98.3 97.1 93.7

WBCD 65.5 94.4 89.3 94.3 94.3 94.7

WDBC 62.0 94.7 89.8 93.3 93.3 93.1

Credit Screening 55.5 84.2 81.9 85.8 83.3 84.8

Table 4. Pattern team-based results compared to other methods.

estimates of the predictive accuracies, the whole process (including Subgroup
Discovery) was embedded in a 5-fold cross-validation procedure. In Table 3, we
show predictive accuracies for a classifier built from the pattern team obtained.
All numbers represent predictive accuracies using cross-validation in percent-
ages. For comparison, the second column (“default”) provides the frequency of
the majority class as a baseline.

Separate experimentation (to be published elsewhere) has shown that, de-
pending on the extent of the Subgroup Discovery phase, k should preferably be
3 or 4. Although at first glance, this appears to too small a number, it should
be noted that 3 or 4 patterns can generate fairly complex models. For example,
assuming k = 3, a model can be constructed that is equivalent to a decision
tree of 15 nodes (7 internal and 8 leafs). Furthermore, each of these three pat-
terns may be rather complex, and involve multiple attributes of the original
data. For a typical size of 3 conditions per pattern, the global model conceivably
could involve up to 3 ∗ 3 = 9 attributes. The experimentation has shown that
with larger pattern teams, the risk of overfitting due to this model complexity
hinders optimal scores for the classifier.

For these reasons, we continue our experiments with pattern teams of size 3.
The first row of Table 3 indicates the quality measure used to discover pattern
teams. The second row indicates the classifier that was used to obtain the (cross-
validated) predictions using the final pattern team. Note that this classifier is not
necessarily the same classifier as used in the wrapper approach (specifically for
DTMp and SVMp). Furthermore, for the quality measures that do not employ
a wrapper approach (joint entropy and BDeu), the DTM classifier was used.
Joint entropy (defined in [12]) is an unsupervised measure based on information
theory. It favours independent patterns, and hence balanced contingencies. BDeu
(Bayesian Dirichlet equivalent uniform) is a measure from Bayesian theory [8]
that, in this context, can be interpreted as an estimate for the performance of a
DTM classifier (without actually computing the DTM) with a penalty for small
contingencies that may lead to overfitting. Winners (and ties) per dataset are
indicated by bold typeface.

On the whole, the DTMp/DTM combination seems to produce the most
informative pattern teams, with optimal scores being achieved in almost half

of the datasets. Its average rank over all datasets is 2.07. Not surprisingly, the
DBeu/DTM combination shows very similar results. Interestingly however, the
additional feature of avoiding overfitting in BDeu does not appear to lead to a
better generalisation capability. The SVMp/DTM combination performs slightly
worse than DTMp/DTM, although it is still responsible for two optimal pat-
tern teams out of seven. On average, SVMp/DTM and LCp/LC perform al-
most equally well, although the difference in performance ranges from −2.3%
to 2.1%, depending on the dataset. It is interesting to note that SVMp/SVM
almost consistently performs worse than SVMp/DTM. Apparently, the SVMp
quality measure is able to select the right patterns, but in the end, a more ex-
pressive classifier is needed to fully exploit these patterns. To our surprise, the
SVMq/SVM consistently is among the worst results of the wrapper-based combi-
nations (average rank 7.36). Apparently, optimising the margin over all pattern
subsets does not select a predictive combination of patterns. As a general trend,
the average rank of the different combinations appears to coincide with the level
of purity (in contrast to margin optimisation) of the quality measure/classifier
combination: DTMp/DTM (average rank 2.07), SVMp/DTM (3.07), LCp/LC
(3.14), SVMp/SVM (4.86), SVMq/SVM (7.36), from pure to optimal margin.

On the whole, the joint entropy/DTM combination performs relatively badly.
This should come as no surprise, as joint entropy is an unsupervised measure.

For a more rigorous comparison of the performance of the different combina-
tions, we have performed a procedure outlined by [5]. A Friedman test performed
on the average ranks per combination (columns in Table 3) shows that the dif-
ferences in performance are significant (p = 3.2 ·10−7). A post-hoc Nemenyi test
shows that the critical distance in ranks is 3.97 at a 5% significance level. As a
result, one can say that the differences between the top 6 ranking combinations
are not significant. However, DTMp/DTM performs significantly better than
both DTMp/SVM and SVMq/SVM. Furthermore, DBeu/DTM, SVM/DTM
and LCp/LC significantly outperform SVMq/SVM.

We would like to repeat that building a classifier with a high classification
accuracy is not our goal per se, although a good classification score is a good in-
dicator for having selected informative patterns. Still, one may wonder how well
our pattern team-based approach compares to existing classification procedures,
as well as to building classifiers from all patterns rather than a small subset. In
Table 4, we provide a comparison between the pattern team results and those
obtained using a number of reference classification procedures (as well as the ma-
jority class baseline). The fourth column presents results obtained by applying
an SVM to all patterns produced by Subgroup Discovery (rather than to sub-
sets of size 3). Here, the same SMO implementation was used as in the pattern
team approaches. The last three columns present results produced using three
well-known procedures available through the Weka package. Note that these
algorithms were run on the data directly (i.e. not on the pattern set). It is im-
portant to note here that the last three columns can only be computed thanks to
the propositional nature of the selected UCI datasets. With structured datasets,

such as multi-relational or graphical ones, the reference algorithms could not
have been applied.

Comparing the third and fourth column of Table 4, we observe that the best
pattern team (k = 3) always outperforms an SVM induced from all patterns dis-
covered (approx. 50). This even holds when comparing with just the SVMp/SVM
results (not shown in this table). The fact that better results can be obtained
using only three, easily inspectable, patterns than using all patterns discovered,
is clear support for our pattern team approach. Comparing the five approaches
listed in Table 4, we note that the classifier based on the best pattern team
can compete with the other four methods (ranking first on three datasets). In
fact, our approach (average rank 2.36) slightly outperforms the three reference
methods (2.43, 2.43, 2.71, respectively), but not significantly so. SD + SVM con-
sistently performs the worst (5.0). The two datasets where pattern teams do not
perform well are Chess and TicTacToe, which both relate to board games. These
datasets tend to require the combination of many low frequency or low Novelty
patterns. It might well be that the required patterns do not appear in the first
50-odd patterns produced during Subgroup Discovery. Again, the comparison
with existing methods is only provided for illustration, as our main purpose is
selecting actionable patterns rather than building optimal classifiers.

5 Discussion and Conclusion

In this paper, we have presented a number of methods for building classifiers
from pattern teams. The different methods have been compared experimentally,
using a number of UCI dataset. In terms of the predictive quality of these meth-
ods, the experiments show a tendency towards purity, meaning that methods
with high expressive power and a disregard for the risk of overfitting perform
well. In our experiments, the model with the highest expressiveness, the deci-
sion table, tends to outperform models of lesser expressive power (the different
linear classifiers). Furthermore, within the linear models, the simple LC classi-
fier, which optimises purity, almost consistently outperforms the Support Vector
Machine. Although these methods use the same linear model, the margin-based
generalisation facilities of the SVM seem to be an obstacle for optimal perfor-
mance in this case. Although the LC classifier was initially chosen as a relatively
efficient alternative to SVMs for small k, it also seems to be preferable from an
accuracy standpoint. Note that this makes two of the best performing classifiers,
DTM and LC, also the most efficient ones.

The tendency towards purity is surprising, as generally avoiding overfitting
is an important issue in classification tasks. It should be noted that we have only
considered pattern teams of relatively small size. Clearly, the risk of overfitting
when combining only 3 patterns is relatively minor, and secondary to the benefit
of optimal purity. With larger numbers of patterns involved, one can expect
this trade-off between purity and generality to shift more towards the latter.
Especially the decision tables, which grow exponentially in size with the number

of dimensions, will likely break down in this case, although the risk of overfitting
can be somewhat avoided by picking redundant patterns in the team.

In our experiments, we have primarily considered the classification score of
the different methods, which might give the impression that predictive accuracy
is the primary, or in fact only virtue when building classifiers from pattern teams.
Although having accurate models is important, we would like to stress again the
value of having a small set of informative patterns, and having the assurance
that these few patterns contribute optimally to the prediction task at hand. In
many cases, the predictive setting will only be used by a domain expert to choose
those patterns that matter.

One issue that was not considered in great detail is the computational cost
of our approach. For all of our classifiers, the running times will significantly
increase with larger values of k. However the biggest influence on the overall
efficiency is the exponential nature of the pattern team discovery process. In
the context of this paper, we have assumed this process to be exhaustive, which
amounts to testing all (n

k) possible pattern teams of size k, and building a classi-
fier for each. Although the pattern team framework is clearly intended for small
teams, a more scalable consideration of candidate teams is desirable. In [11], a
number of methods were presented for pruning the candidate space, by exploit-
ing properties of the quality measure in question (joint entropy). This paper also
described an approximate search algorithm that greedily adds patterns, starting
from the empty set. For each addition, the pattern that improves the quality of
the team the most is selected, resulting in a O(kn) time complexity. For joint
entropy, it turns out that this ‘quadratic’ forward selection results in a near-
optimal pattern team. Cheng et al. [4] demonstrate that such a greedy approach
can produce positive results. As an alternative, [20] presents a ‘linear’ method
that picks the relevant patterns in O(n) steps. This method assumes that the
patterns are ordered, for example by support or complexity of the pattern, be-
fore starting the actual selection. This sorting can of course be done in O(n lg n)
time.

The success of forward selection processes (either linear or quadratic) highly
depends on the quality measure chosen. Unfortunately, in the case of supervised
quality measures (as opposed to joint entropy), forward selection methods are
less likely to find near-optimal pattern teams. One can easily construct exam-
ples where the greedy method would completely ignore patterns that lead to
an optimal team. Think for example of two patterns that constitute an XOR-
problem. Of course, one could argue that this will not be a problem for some of
the classifiers we use, which cannot deal with the XOR-problem any way. Note
that the obvious alternative, backward selection (repeatedly removing patterns
from the complete set), would not be an option as most of the chosen classifica-
tion procedures only work for small sets of patterns. In further work, we intend
to investigate different heuristic pattern selection procedures that could provide
efficient approximations of pattern teams.

References

1. O. Aichholzer and F. Aurenhammer. Classifying hyperplanes in hypercubes. SIAM
Journal of Discrete Mathematics, 9(2):225–232, 1996.

2. B. Bringmann, A. Zimmermann, L. De Raedt, and S. Nijssen. Don’t be afraid of
simpler patterns. In Proceedings PKDD’06, pages 55–66, Berlin, Germany, 2006.
Springer-Verlag.

3. C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

4. H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis
for effective classification. In ICDE, pages 716–725, 2007.

5. J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7:1–30, 2006.

6. R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley, 2001.
7. I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal

of Machine Learning Research, 3:1157–1182, 2003.
8. D. Heckerman, D. Geiger, and D. Chickering. Learning bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 20:179–243,
1995.

9. A. Knobbe. Safarii multi-relational data mining environment.
http://www.kiminkii.com/safarii.html, 2006.

10. A. Knobbe, B. Crèmillieux, J. Fürnkranz, and M. Scholtz. From
local patterns to global models: The LeGo approach to data min-
ing. In Proceedings LeGo’08 workshop at ECML PKDD’08, pages 1–16,
http://www.ecmlpkdd2008.org/files/pdf/workshops/ lego/1.pdf, 2008.

11. A. Knobbe and E. Ho. Maximally informative k-itemsets and their efficient dis-
covery. In Proceedings KDD’06, pages 237–244, Philadelphia, PA, 2006.

12. A. Knobbe and E. Ho. Pattern teams. In Proceedings PKDD’06, pages 577–584,
Berlin, Germany, 2006. Springer-Verlag.

13. R. Kohavi. The power of decision tables. In Proceedings ECML ’95, pages 174–189,
London, UK, 1995. Springer-Verlag.

14. R. Kohavi and G. John. The wrapper approach. In Feature Extraction, Con-
struction and Selection: a data mining perspective, pages 33–50. Kluwer Academic
Publishers, 1998.

15. N. Lavrac. Subgroup discovery techniques and applications. In Proceedings
PAKDD’05, pages 2–14, 2005.

16. T. Mielikäinen and H. Mannila. The pattern ordering problem. In Proceedings
PKDD’03, pages 327–338, Cavtat-Dubrovnik, Croatia, 2003. Springer-Verlag.

17. B. Pfahringer. Compression-based feature subset selection. In Proceedings IJ-
CAI’95, Vienna, 1995.

18. J. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In Advances in kernel methods: support vector learning, pages 185–208.
MIT Press, Cambridge, MA, USA, 1999.

19. A. Srinivasan, S. Muggleton, and R. King M. Sternberg. Theories for mutagenicity:
A study in first-order and feature-based induction. Artificial Intelligence, 85(1,2),
1996.

20. A. Zimmermann, B. Bringmann, and L. De Raedt. The chosen few: On identifying
valuable patterns. In Proceedings ICDM’07, 2007.

