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Abstract. We investigate a class of problems that deal with ranked
data. Such data can be found in a variety of domains, ranging from in-
herently competitive fields such as sports and business, to more surprising
applications such as relevance ranking and temporal data (where more
recent events rank higher). In this paper, we deal with ranked data in a
Subgroup Discovery setting, where we are looking to find subgroups that
occur predominantly at the top of the ranking. The analysis of ranked
data can be posed as either a regression or an ordinal discovery problem,
and we introduce and review a number of quality measures for both set-
tings. As an additional challenge, the possibilities of ties in the ranking
(a so-called partial ranking) is accounted for. The techniques for ranked
Subgroup Discovery are tested on an important application in cancer
research, where a given ranking of 12k genes (based on their individual
involvement in a tumour called neuroblastoma) is analysed for common
functional themes among the top-ranking genes.

1 Introduction

This paper is concerned with the analysis of objects that are ranked. A ranking
of objects provides information about the relationship between objects: high-
ranking objects are somehow ‘bigger’, ‘better’ or ‘more recent’ (depending on the
application domain) than all objects with a lower rank. We will be investigating
the question of what makes some (groups of) objects appear at the top of the
ranking, and others not. We will be approaching this question from a Subgroup
Discovery (SD) [1, 5, 7, 8, 10] point of view, that is, we aim to discover subgroups
that are over-represented at the top of the ranking, and are uncommon in lower
regions.

One should note that ‘top of the ranking’ is a vague notion, and it is often
undesirable to provide a clear cut-off between top-ranking objects and the re-
mainder of the database. Therefore, approaching the analysis of ranked data as
a binary classification problem (which is the usual SD setting) is not an option.
A more logical setting would be to treat the rank of each object as a number,
and thus opt for a regression setting. In this setting, good subgroups, includ-



ing mostly high ranking objects, will have a significantly lower average number4

than can be expected from the database average. In fact, some of the solutions
provided in Section 4 will be assuming such a regression setting. However, treat-
ing the rank as actual numbers implies a metric that may be entirely artificial,
thus potentially producing artifacts in the results. For example, the difference
between rank 1. and 2. need not be the same as that between 5. and 6. The obvi-
ous solution to this artificial metric is to treat the analysis as an ordinal problem
[3], and we will investigate a number of ways to do this in the SD paradigm.

Subgroup Discovery for ordinal and regression problems is mostly a matter
of providing quality measures that treat the target (typically the rank) in the
appropriate manner, by evaluating subgroups that are over-represented at the
top favourably. Section 4 introduces a range of quality measures, both for the
ordinal and regression setting. Each measure has its own specific qualities that
make it desirable or less desirable, depending on the specific needs of the ap-
plication domain. Essentially, each quality measure answers a specific type of
analysis question, and as such, one cannot really compare measures, and answer
conclusively the question of which measure is the preferred choice. However, we
do investigate different properties, and shed light on the specific advantages of
each measure.

The measures we survey were taken from various backgrounds. We propose
one new measure, called Median MAD Metric, and furthermore consider two
measures from the numeric Subgroup Discovery field [5, 7, 14, 15], as well as
measures that are inspired by well-known statistical tests, but as yet not em-
ployed to analyse ranked data. The collection of measures is selected such that
the range of analysis questions imaginable for ranked data is covered by the
available measures.

The analysis of ranked data is very widely applicable. Obvious examples
come of course from domains that are competitive by nature, such as sports
(e.g., FIFA World Ranking (soccer), FIDE Federations Ranking (chess)) and
business (Fortune 500). The following example demonstrates how this might
work:

Example 1. Table 1 shows the final ranking of countries participating in the
2010 Winter Olympics in Vancouver, based on the total number of medals ob-
tained (irrespective of the type of medal). For reasons of presentation, we only
consider the 24 countries that won at least one medal. The table includes in-
formation about the participation of countries, as well as general demographics
of the country and its inhabitants, such as its population size, the most com-
mon language (family), and whether the country is a republic. Note that some
countries share a particular rank, as they obtained equal numbers of medals.

One of the simplest subgroups that will be considered by a typical SD algo-
rithm is the set of countries that have polar regions (polar = y). As the data

4 We will use low numbers to denote high ranks, such that 1. denotes the best ranking
object.



Table 1. Ranking of countries participating in the 2010 Olympic Winter Games.

Rank Country Medals Athletes Continent Popul. Lang. Family Republic Polar

1 United States 37 214 N. America 309 Germanic y y
2 Germany 30 152 Europe 82 Germanic y n
3 Canada 26 205 N. America 34 Germanic n y
4 Norway 23 100 Europe 4.8 Germanic n y
5 Austria 16 79 Europe 8.3 Germanic y n
6 Russian Fed. 15 179 Asia 142 Slavic y y
7 Korea 14 46 Asia 73 Altaic y n
9 China 11 90 Asia 1338 Sino-Tibetan y n
9 Sweden 11 107 Europe 9.3 Germanic n y
9 France 11 107 Europe 65 Italic y n
11 Switzerland 9 144 Europe 7.8 Germanic y n
12 Netherlands 8 34 Europe 16.5 Germanic n n
13.5 Czech Rep. 6 92 Europe 10.5 Slavic y n
13.5 Poland 6 50 Europe 38 Slavic y n
16 Italy 5 110 Europe 60 Italic y n
16 Japan 5 94 Asia 127 Japonic n n
16 Finland 5 95 Europe 5.3 Finno-Ugric y y
20 Australia 3 40 Australia 22 Germanic y n
20 Belarus 3 49 Europe 9.6 Slavic y n
20 Slovakia 3 73 Europe 5.4 Slavic y n
20 Croatia 3 18 Europe 4.5 Slavic y n
20 Slovenia 3 49 Europe 2 Slavic y n
23 Latvia 2 58 Europe 2.2 Slavic y n
25 Great Britain 1 52 Europe 61 Germanic n n
25 Estonia 1 30 Europe 1.3 Finno-Ugric y n
25 Kazakhstan 1 38 Asia 16 Turkic y n

shows, this is a reasonably interesting subgroup, as three of the top four coun-
tries are included (1. United States, 3. Canada, 4. Norway), and furthermore,
only a single polar country appears in the lower half of the ranking (16. Fin-
land). A somewhat more complicated subgroup that scores particularly well is
the following:

language family = Germanic ∧ athletes ≥ 60

These conditions select countries of which the majority of inhabitants speak
a Germanic language (e.g., English, German, the Scandinavian languages, ...),
and that have sent at least 60 competing athletes (this further excludes the
Netherlands, Great Britain and Australia). The subgroup comprises 7 countries
(1. United States, 2. Germany, 3. Canada, 4. Norway, 5. Austria, 9. Sweden, 11.
Switzerland), the majority of which appear in the top 10 of the ranking.

Apart from applications in sports and business, the proposed techniques can
be applied to temporal data of discrete nature. One could argue that a sequence
of events is ranked according to time, with the most recent event having the



highest rank. Discovering current trends, fashions or developments would thus
translate to finding subgroups that encompass mostly recent events. This tem-
poral setting can be of benefit in applications such as finding descriptions for
recent trends in movie releases, press releases or financial transactions, to name
but a few.

Finally, the described methods can play an important role in making sense
of objects somehow ranked by relevance, such as webpages returned by Google,
and ranked by PageRank. One instance of such relevance ranking, that was our
original motivation for considering extensions to the standard SD setting, can be
found in the Bioinformatics domain. Here, the initial statistical analysis of high-
throughput data such as from micro-arrays typically results in a list of genes
ranked by relevance to the particular disease or phenotype under consideration.
In a European project that all authors were involved in – the European Em-
bryonal Tumour Pipeline (EETP) project [9] – a number of gene rankings were
produced for a variety of tumour types involving young children. As the number
of genes can be large, in this case over 12 thousand, and domain experts gener-
ally only are familiar with the most well-known ones, the task of making sense
of such a large ranking of genes can be daunting. Subgroup Discovery on ranked
data was used in order to shed light on the most relevant genes in the list, and
find descriptions of the top-ranking genes in terms of a number of background
sources of gene-related domain knowledge. These include relational information
about protein-families, functional annotations, gene locations, and gene-to-gene
interaction networks. In Section 6, we evaluate our methods on data relating to
one particular tumour of the nervous system, known as neuroblastoma [2], for
which data was collected during the EETP project.

2 Preliminaries

Subgroup discovery is performed on a dataset D, with individuals (records)
x ∈ D of the form x = {a1, . . . , am, t}, where m is a positive integer. The set
of attributes {a1, . . . , am} is denoted by a, taken from domain A. The target
attribute t is assumed to be continuous and taken from domain R, the ordinal
target attribute is a special case of a continuous target attribute. The size of the
dataset is denoted by N = |D|. The list of target values of all individuals in the
dataset is denoted by T = {T1, . . . , TN}.

Rankings come in two types, complete and partial. In the complete case, all
individuals have a unique value for their target attribute t. In a partial ranking
however, at least two individuals will have the same value for t, such that their
mutual order cannot be determined. The Olympic ranking of countries is an
example of such a partial ranking. In the case of an ordinal approach to ranking,
we will be assuming that individuals are labeled by integers (T = {1, . . . , N}),
with 1 denoting the highest ranking individual. For ordinal rankings that are
partial, we will be assuming the so-called fractional ranking : all equal individuals
will be assigned the mean of the rank of these individuals, were ties arbitrarily
broken. This is equivalent to 1 + n+ + (n= − 1)/2, where n+ is the number



of higher-ranked individuals, and n= the number of ties. For example China,
Sweden and France share rank 1 + 7 + (3− 1)/2 = 9.

A subgroup of the dataset is a set of individuals s ⊆ D that are covered by
a certain pattern p (condition) in pattern language P. A pattern is a function
p : A → {0, 1}, where pattern p covers individual xi ∈ D if and only if p(ai) = 1.
The size of subgroup s is denoted by n. The list of target values of the individuals
in the subgroup is denoted by t = {t1, . . . , tn}. Hence, a pattern corresponds to
one subgroup, and a subgroup corresponds to a subset of individuals in the
dataset. The complement of subgroup s̄ is the subset of individuals s̄ = D \ s,
i.e. all individuals not in subgroup s. The list of target values of all individuals
in s̄ is denoted by t̄ = T \ t. The size of the complement of the subgroup is
denoted by n̄ = N − n.

The quality of a subgroup is defined by a quality measure ϕ(p) : P → R
that assigns a numeric value to a pattern p given a dataset D. The objective
of a quality measure is to return patterns that are evaluated as best. What is
considered as best, i.e. either a large value or a small value (even negative),
depends on the characteristics of the quality measure.

It may be the case that two different qualities evaluate subgroups differently,
but still produce lists of interesting subgroups in the same order. In this case,
the two quality measures are called order-equivalent :

Definition 1 (order equivalence). Two quality measure ϕ1(s) and ϕ2(s) are
called order-equivalent ϕ1(s) ∼ ϕ2(s), iff ϕ1(s1) > ϕ1(s2) → ϕ2(s1) > ϕ2(s2) ∧
ϕ1(s1) = ϕ1(s2)→ ϕ2(s1) = ϕ2(s2) ∀s1, s2 ∈ s.

3 Intuitions on Subgroups

In our view, quality measures are a formal expression of the kinds of subgroups a
data analyst is interested in. In many cases, the analyst will have some informal
ideas about the nature of the ideal subgroup, which should then be translated
into a specific choice of quality measure. In this section we will review a number
of such informal qualities of subgroups, which we will refer to as intuitions. The
quality measures, and how they match the intuitions defined here, will then be
discussed in the next two sections.

Somewhat informally, the following intuitions are typical for subgroups in
ranked data:

I1 size: Larger subgroups (containing many individuals) will be preferred
over smaller ones.
I2 rank: The majority of the subgroup individuals should be highly ranked.
I3 position: The ‘middle’ of the subgroup should differ from the middle of
the ranking.
I4 deviation: The subgroup individuals should have similar ranks.

The first intuition is rather straightforward, and common to many mining
paradigms. Larger subgroups represent more common and more reliable themes



in the data. One could argue that really large subgroups are less interesting
because they are too general. This notion is however covered by the Intuitions
2 and 3, as the distribution of a really large subgroup starts to resemble that of
the entire database.

Intuition 2 is the obvious intuition one has when dealing with rankings that
high ranking individuals are important. It is a special case of Intuition 3, which
specifies that subgroups should not be spread around the ‘middle’ (mean, me-
dian, ...) of the ranking. Intuition 3 allows for targets that are not a fractional
ranking per se, for example when one has a numeric target where high values
indicate high ranks.

Intuition 4 requires the individuals to have similar ranks, that is, the indi-
viduals should ideally form a block. If this is not the case, the distribution of
the dataset and the subgroup can become alike, due to the more even spread of
the subgroup individuals in the dataset.

4 Quality Measures

Currently, most quality measures in Subgroup Discovery are only applicable to
nominal target attributes. Moreover, most quality measures require targets to be
binary. To the best of our knowledge, only a few studies have been conducted on
Subgroup Discovery involving continuous target variables. No studies have been
conducted on Subgroup Discovery with ordinal targets. In [7], Klösgen presents
a measure (mean test) to deal with continuous target attributes. This measure
was later adopted by Grosskreutz [5]. Trajkovski [14, 15] has implemented a few
quality measures for continuous target attributes, one of which is the z-score.
Both the mean test and the z-score were also implemented by us and will be
presented later. They can both deal with ordinal target attributes too, although
they are not specifically designed for such targets.

In the next two sections, we provide a list of quality measures for ranked data.
The first section is concerned with measures for continuous targets, whereas the
second deals with measure for ordinal targets. With respect to their prior use for
ranked data, the 8 measures are either, a) well-established in ranked Subgroup
Discovery (Mean test, Standardized z-score), b) well-known statistical measures
with a novel application to ranked SD (Average, t-statistic, Median χ2 statistic,
Area under the ROC curve, Wilcoxon-Mann-Whitney Ranks statistic), or c)
entirely novel (Median MAD metric).

4.1 Quality Measures for Continuous Target Attributes

Average A relatively simple and effective quality measure is the average target
value (mean, µ) of a subgroup. Depending on the subgroup search objectives,
a maximum of all averages or minimum of all averages is best. For instance,
if the number of medals obtained (see example 1) is the target, high averages
are desired (maximization). On the other hand, if the rank of the country is
the target, low averages are prefered (minimization). Given the list of subgroup

target attribute values t with size n, the average is ϕavg(s) =
∑n

i=1 ti
n .



Mean test A more complex measure is the mean test. It compares the distribu-
tion of the subgroup to the distribution of the dataset: ϕmt(s) =

√
n(µ− µ0). µ

is the mean of t (the subgroup) and µ0 is the mean of T (the entire dataset). The
evaluation values of the mean test can assume values from the interval (−∞,∞),
where a negative value indicates that the subgroup mainly is positioned below
the dataset mean, and vice versa.

(Standardized) z-score The z-score [3] for a group of individuals can be cal-
culated using the standardized version of the z-score, and has been used for
instance by Trajkovski et al. [14, 15]. The standardized z-score of a subgroup is

defined by ϕz(s) = µ−µ0

(σ0/
√
n)

=
√
n(µ−µ0)
σ0

. µ and µ0 are defined as before, σ0 is the

standard deviation of T . The standardized z-score measures how far the mean
of the subgroup is away from the mean of D in terms of standard deviations. As

ϕz(s) = ϕmt(s)
σ0

, and σ0 is constant for a given dataset, the following holds:

Proposition 1 (ϕz(s) and ϕmt(s) order equivalence). ϕmt(s) ∼ ϕz(s)

The evaluation values of the z-score range from −∞ to ∞, with positive values
indicating a subgroup mean above the dataset mean.

t-Statistic Compared to the z-score, the t-statistic [3] is more accurate for
smaller sample sizes. It is thus more suited when subgroup sizes can or should
be small. The t-statistic is related to the z-score in the sense that they both
compare the distribution of the subgroup to the distribution of the dataset, but
the t-statistic uses the subgroup deviation instead of the dataset deviation. This
makes the t-statistic sensitive to differences in variances in subgroups. The range
of the evaluation values of the t-statistic is (−∞,∞). The sign of the evaluation
value gives information of the position of the majority of the subgroup, similar
to ϕz(s). The t-statistic for a subgroup is calculated as follows: ϕt(s) = µ−µ0

(σ/
√
n)

=
√
n(µ−µ0)
σ , where n, µ and µ0 are defined as before. σ is the standard deviation

of t.

Median χ2 Statistic The median χ2 statistic [3] uses the median of the dataset

to calculate the difference in distributions. The median is either
TN/2+TN/2+1

2 if N
is even, or TN+1

2
if N is odd. The distribution difference between the dataset and

the subgroup is calculated by counting how many individuals in both the sub-
group and the dataset lie above the dataset median and at or below the dataset

median: ϕχ2(s) = (nl−Nl)
2

Nl
+ (ns−Ns)2

Ns
. nl and Nl stand for the frequencies of

individuals in the subgroup and the dataset respectively whose target values are
larger than the dataset median. ns and Ns consequently denote the frequencies
of individuals in the subgroup and the dataset respectively whose target values
are equal to or smaller than the dataset median. The evaluation values range
from 0 to ∞, where 0 denotes that the subgroup individuals are equally divided
around the dataset median and that the subgroup is large.



4.2 Quality Measures for Ordinal Subgroup Discovery

From a statistical point of view, ordinal data, such as ranked data, is data for
which it is not known from what kind of distribution the data originates. More
specifically, it is assumed that such data does not even follow a distribution.
Therefore, nonparametric tests are used to make inferences on ordinal data [3].
The quality measures implemented for Subgroup Discovery on ordinal data are
either based on nonparametric tests or inspired by them. These measures are
less sensitive and more robust than their parametric counterparts, such as the
t-statistic and z-score.

AUC of ROC The area under the Receiver Operating Characteristic (ROC)
curve [6] is traditionally a metric to compare the performance of classifiers. The
AUC of ROC is modified in such a way that it measures how interspersed the
individuals of a subgroup are in the overall dataset. In other words, this measure
is very useful to define the position of the subgroup individuals in the dataset
and whether they are grouped together or more spread out. To do so, the AUC
of ROC divides the individuals of the dataset into s and s̄. The AUC of ROC is

calculated as follows: ϕroc(s) =
∑n̄

i=1 t̄i−
n̄(n̄+1)

2

n̄n
The ϕroc(s) measure can only be used on complete rankings. The range of

the ϕroc(s) is [0, 1]. If ϕroc(s) = 1, the n individuals of the subgroup correspond
to the first n individuals in the ranking. If the measure returns 0 however, the
subgroup represent only the n lowest ranks. All other values indicate that the
individuals are either not closely packed and/or the best (or worst) dataset
individual is not present in the subgroup. Note that the size of the subgroup
does not affect the value of ϕroc(s).

Wilcoxon-Mann-Whitney Ranks statistic The Wilcoxon-Mann-Whitney
Ranks (wmw) statistic [3] is derived from the nonparametric Wilcoxon-Mann-
Whitney Ranks test. It is related to the z-score, since it calculates the difference
of the means of the ranks through the z-statistic. The distribution of the sub-
group is compared to the distribution of the complement of the subgroup. The

wmw ranks statistic is defined as follows: ϕwmw(s) =
∑n

i=1 ti−µ0

σ0
. Here, the mean

and standard deviation of the dataset are defined on the ranks and differ from

the usual definitions: µ0 = n(N+1)
2 and σ0 =

√
nn̄(N+1)

12 . The range of ϕwmw(s)

is (−∞,∞). The interpretation of the evaluation values is equal to the interpre-
tation of the ϕz(s) evaluation values.

Median MAD Metric Apart from the statistics described above, a new metric
was developed, the median MAD metric (mmad). The mmad maximizes on
the subgroup size and minimizes on the median and median absolute deviation
(mad). The median and the mad are the robust, nonparametric counterparts of
the mean and the standard deviation. The median and the mad are not sensitive
to outliers, as long as there are only few. Thus, large subgroups with a relatively
small portion of bad individuals are not penalized too heavily. This does happen
when the mean or standard deviation are used.



The median mad metric mmad shows a bias towards large subgroups where
the majority of the individuals have top ranks. The metric does not compare
the subgroup distribution to the dataset distribution, but just calculates a ratio
for the subgroup size and the position of the individuals (cluster) in the sub-
group. The mmad is defined as follows: ϕmmad(s) = n

2·m+mad , where the mad is
denoted by mad(t) = median(y). Here, y = {|t1 −m|, . . . , |tk −m|}, and m is
the median of t. The evaluation values range from 0 (worst) to ∞ (best).

5 On Quality Intuitions and Quality Measures

In this section, we investigate different characteristics of the quality measures
presented in the previous section. We shed some light on how, and on which
type of data each of the measures should be applied. Furthermore, in order to
better understand the types of subgroups each measure favours, we loosely test
to what extent each quality measure follows each intuition.

In table 2 below, we list some basic characteristics of the quality measures.
The table shows what kind of targets the measures can deal with (ordinal, nu-
meric, or both). Also, whether a measure can deal with partial or complete
rankings is shown here (only ϕroc is limited to complete rankings). Symmetry
indicates how values returned by the measures should be interpreted. A positive
value (> 0) of the measure denotes that the subgroup distribution of the target is
predominantly above that of the dataset distribution. A negative value indicates
that the subgroup distribution lies below the dataset distribution. The fourth
characteristic indicates what kind of information is needed, that is, whether the
distributions on s, D and/or s̄ are required for subgroup evaluation.

Table 2. Quality measures and their characteristics.

ϕavg ϕmt ϕz ϕt ϕχ2 ϕroc ϕwmw ϕmmad
Continuous/Ordinal targets both both both both both ordinal ordinal ordinal
Complete/Partial ranking both both both both both complete both both
Symmetric no yes yes yes no no yes no
Distribution information s s&D s&D s&D s&D s&s̄ s&s̄ s

Table 3 below shows information about the applicability of the measures.
The first row, configurations, shows whether one can maximize on target at-
tribute values, minimize or both maximize and minimize on the target attribute
values (use the absolute values). The rest of the table tells when to maximize or
minimize. The second row describes whether the measure can be applied to the
continuous target value (rather than the rank). The last row explains whether
measure values should be minimized or maximized when applied to the (partial)
ranking.



Table 3. How to configure quality measures.

ϕavg ϕmt ϕz ϕt ϕχ2 ϕroc ϕwmw ϕmmad
Configurations (max/min/abs) max&min all all all max max all max
Original target yes yes yes yes yes no no no
Ranking (1 is best) min min min min max max min max

Table 4. Two artifical rankings, and four artificial subgroups defined on them. The
value 1 indicates membership of si.

score rank 1 rank 2 s1 s2 s3 s4
0.150 1.5 1 1 1 1 1
0.150 1.5 2 1 1 1 1
0.140 3 3 1 1 1 1
0.130 4.5 4 1 0 1 1
0.130 4.5 5 1 0 1 1
0.110 6 6 1 1 1 0
0.100 7 7 1 1 1 0
0.090 9 8 1 0 0 0
0.090 9 9 1 1 0 0
0.090 9 10 1 0 0 0
0.070 11.5 11 0 0 0 0
0.070 11.5 12 0 0 0 0
0.035 13.5 13 0 1 0 0
0.035 13.5 14 0 0 1 0
0.001 15 15 0 1 1 0

subgroup size 10 8 9 5

5.1 Intuitions

To illustrate the characteristics of the quality measures, we have performed a
test on two artificial rankings, shown in Table 4. The objects are ranked in two
ways: the first ranking (rank 1 ) is partial and based on the (artificial) values in
the second column (score). rank 2 is a complete ranking that is not related to the
first two columns (as these have ties). The evaluation of the artificial subgroups
s1, ..., s4 are shown in Table 5. The quality measures were used on the targets
with which they can deal. Optimal values are in bold.

In Table 6, the quality intuitions are informally compared to the quality
measures. As can be seen from Tables 4, 5 and 6, many quality measures ignore
the size of a subgroup, especially for this small dataset. Most quality measures
favour subgroup s4 over s1, although given the size intuition, subgroup s1 clearly
is more attractive than s4. Only ϕwmw and ϕmmad favour different subgroups,
where s1 and s4 tie when using ϕwmw, and s3 and s1 are very close when ϕmmad
is used. ϕmt, ϕz and ϕt score reasonably well given the size intuition.



Table 5. Evaluation values on artificial dataset. Best evaluation values are in bold.
Maximized values are shown in italic. The remaining values are minimized.

ϕavg ϕmt ϕz ϕt ϕχ2 ϕroc ϕwmw ϕmmad
target=score

s1 0.118 0.079 1.757 3.162 3.125
s2 0.097 0.011 0.251 0.21 3.696
s3 0.105 0.036 0.8 0.679 4.5
s4 0.14 0.105 2.335 10.51 8.571

target=rank 1 (partial)

s1 5.5 -7.906 -1.781 -2.66 5 -3.062 0.741
s2 7.063 -2.65 -0.597 -0.512 3.4 -0.868 0.464
s3 6.278 -5.166 -1.164 -1.056 2.7 -1.827 0.783
s4 3 -11.18 -2.518 -7.454 7.5 -3.062 0.667

target=rank 2 (complete)

s1 5.5 -7.906 -1.768 -2.611 3.571 1 -3.062 0.741
s2 7 -2.828 -0.632 -0.555 3.411 0.64 -0.926 0.471
s3 6.333 -5.001 -1.118 -1 3.696 0.78 -1.768 0.75
s4 3 -11.18 -2.5 -7.072 8.125 1 -3.062 0.714

On Intuition 4, deviation, all quality measures score reasonably well. Only
ϕχ2 does not specifically take the deviation of subgroups into account. This is
illustrated by subgroup s2, where the evaluation value is relatively close to that
of subgroups s1 and s3. ϕroc does not cover the third intuition (position) well.
Subgroups s4 and s1 are judged equally good, although clearly the distribution
of s4 is much less like the dataset distribution than the distribution of s1. The
other quality measures, however, cover the third intuition quite well, not in
the least since most compare the distribution of the subgroup to the dataset
distribution. ϕroc however, covers the Intuition 2 (rank) very well, something
that is illustrated again by s1 and s4. Except for the ϕχ2 measure, all measures
capture the second intuition.

6 Experiments and Results

The presented quality measures for ordinal and numeric targets were imple-
mented in the multi-relational data mining package Safarii [8], which already
offers a generic Subgroup Discovery algorithm. The extensions for ranked data
assume that the ranking of individuals in the database is determined by the
target attribute, and that ordinal attributes start from the value 1, and use
fractional ranks to represent ties, as described in Section 2. Safarii provides
the possibility to mine multi-relational data, such that complex representations
for individuals are no problem. In multi-relational data, it is assumed that the
(ranked) individuals are represented by records in a so-called target table. All
potential target attributes should therefore appear in this target table. The new
implementation has been tested on a variety of ranked datasets. In this paper



Table 6. Informal qualification of quality measures given the intuitions. Values range
from −− (very bad match) to ++ (very good match).

ϕavg ϕmt ϕz ϕt ϕχ2 ϕroc ϕwmw ϕmmad
I1: size −− + + − −− −− ++ ++
I2: rank ++ + + + −− ++ + +
I3: position + ++ ++ ++ ++ −− ++ +
I4: deviation + + + ++ −− ++ + +

we present results on data related to the European Embryonal Tumour Pipeline
project.

The generic SD algorithm in Safarii performs a heuristic search through the
search space of candidate subgroups, guided by the selected quality measure.
The heuristic search is essentially a beam-search with a configurable width and
breadth, which is further bounded from below by a minimum support thresh-
old. We have opted for heuristic search as in many cases, specifically of multi-
relational nature, the search space prohibits the use of exhaustive methods.
Safarii is able to deal with both numeric and nominal attributes in the sub-
group description, although in the case of the biological application we present
here, only nominal information was analysed (except for the target attribute of
course). Although we present subgroups as conjunctions of (seemingly) propo-
sitional conditions, the descriptions are actually multi-relational, with implicit
existential quantors accounting for the one-to-many relationships between the
target table and the remaining background knowledge.

6.1 Neuroblastoma data

The EETP project is concerned with the analysis of genes potentially involved
in a number of embryonal tumours. Our specific attention was focused on the
childhood tumour of neuroblastoma. Since it is believed that neuroblastoma
is not caused by environmental factors [2], research focuses on genetic factors,
such as genes, gene expression, cell processes and so forth. Using a range of
biological high-throughput analysis platforms, different aspects on these factors
can be measured for activity in the tumour tissue. The typical outcome of such
an analysis is a list of gene expressions measured over multiple patients, which
in turn can be translated into a long list of genes, ranked by their differential
expression. ‘Differential’ in this case refers to providing information about the
difference between two classes of tumours, e.g., easily treatable and progressive.
There are many ways to produce such a ranking of genes, most of them based on
some measure of correlation between expression level and the class, such as the
significance of a t-test or weighted relative accuracy [1]. For the neuroblastoma
data, Safarii was used to produce such a primary ranking of genes from the
expression data [9]. As the two target classes, we chose tumours from patients
with no events after removal of the primary tumour, and tumours from patients
who had a relapse, possibly with fatal outcome.



Given the ranking, the next obvious question is how to characterise the top-
ranking genes, which apparently explain the difference between the two classes
of tumours. In other words, one would like to gather additional information
concerning each gene, and apply the presented Subgroup Discovery techniques
in order to ‘enrich’ (the biological terminology) the ranking of genes [13–15].
The neuroblastoma-related gene ranking was joined with a substantial amount
of background information that was obtained from a number of well-known on-
line sources of genetic domain knowledge. The first two sources of gene-specific
knowledge represent functional annotations (one or more functions selected from
a large hierarchy) and come from the KEGG and GO databases (Gene Ontol-
ogy [4]). Furthermore, information was added about which protein families [12]
genes belong to. Protein families determine which proteins are related to each
other (belong to the same family) given their chemical structure. Since proteins
are translated from genes, protein families also give insight in gene families. As
a third source of information, the genomic location of the gene was added, that
is, the chromosome it appears on, and the exact location at different levels of
detail (so-called cytobands). Finally, a gene interaction network was included,
such that for each gene in the ranking, a set of genes can be specified with which
it is known to interact. As such, we can look for secondary genes that interact
with the majority of the top-ranking genes. Each of these four sources was rep-
resented as a separate table, such that the final database under investigation
comprised 5 tables, of which the ranked table of genes was assigned the target
table. Because of one-to-many relationships between some of these tables, our
dataset constitutes a multi-relational problem [8, 14, 15]

Within the target table there are two attributes that can act as the target:
an attribute (score) representing a measure of differential expression of the gene
in question, and a rank attribute (rank) that is derived from the score. As a
result, we have three options:

1. treat score as the numeric target
2. treat rank as an ordinal target
3. treat rank as a numeric target

For our experiments, we have tested all three options, but here only report on
the last two5. For each of these, the appropriate quality measures were tested.
As the data was partially ranked, our results do not include those for ϕroc.
Although we have extensively experimented with parameter-settings that lead
to large search spaces (for specific quality measures), here we present results for
moderate settings only, for reasons of comparability and efficiency. We report
subgroups of at most three conditions (d = 3), coming from all four domains
mentioned. The width of the beam-search was set to one hundred (w = 100),
and a minimum support of five genes per subgroup was required (c = 5).

Qualifying the Results Table 7 shows for each quality measure the first 5
subgroups that were found. Each line represents a multi-relational description

5 The results on the score attribute are mostly comparable to those presented here,
with only slight changes in the order of subgroups reported.



of a subgroup, with implicit references to the background table in question. As
an example, the first description for ϕavg(s) should be interpreted as follows: all
genes X for which there is an interacting gene Y called ‘CDK3’, and for which
there is a interacting gene Z called ‘CDC2’.

An important observation is that, irrespective of the quality measure, there
are patterns so strong that they are found by most quality measures. These
patterns are, amongst others, the GO-terms cell cycle, nucleus and mitosis.
Furthermore, as can be seen from Table 7, the largest subgroups have patterns
in which a GO-term is included.

GO-terms and gene-to-gene interactions in relation to neuroblastoma tu-
mours have been investigated in other studies. Some of the patterns we found,
were also found in other studies. For instance, the GO-terms DNA replication,
cell cycle and DNA replication initiation can be found in [11]. Other notable pat-
terns that were found are interacting genes of the CDC, CDK and MCM families,
such as CDC2, CDC7, CDC25A, CDK2, CDK3 MCM2, MCM3 and MCM10.
These genes and families are known to play a role in cell division control, and
their expression is specifically associated with carcinogenesis [2].

Several protein families also occurred frequently: Histone and MCM. A few
of the most frequent chromosomes (or subsections of chromosomes) are chromo-
somes X, 6, 1, 11 and 17, along with cytobands Xq28, 6p22.1 and 17p11.2. Chro-
mosomes 1, 11 and 17 or cytobands of these chromosomes have been identified as
relevant for neuroblastoma in the past [11, 2]. Note that the important findings
in the literature were produced with great effort, and using various biological
analysis techniques, while our results are based on fairly standard expression
data only. More extensive results from our experiments on neuroblastoma can
be found in [10].

Comparison of Quality Measures The quality measures return different
subgroups, with different conditions and different sizes, according to the mea-
sures’ characteristics. Although the subgroups are not equal, we are interested
in the performance of the quality measures in terms of how the quality of the
subgroups develops. Since the scales of the measures are incomparable, we de-
cided to normalize them. After normalization, the best performing subgroup is
assigned the value 1, whereas the rest of the subgroups get assigned a value that
lies between 1 and 0.

The normalized evaluation values for numeric and ordinal Subgroup Disco-
very are shown in Figure 1. The quality measures that produce average sized
subgroups do not show a large decline. For instance, quality measures ϕmt, ϕz
and ϕwmw return both large and small subgroups, with an approximate aver-
age size of 200 for the first 100 subgroups. The decline does not drop below
0.5. The results show that ϕavg, ϕt, ϕχ2 have a strong preference towards small
subgroups. Also, not surprisingly, ϕmmad has a strong preference towards large
subgroups. Note that ϕχ2 produces many subgroups on the minimum support
level (5) with equal scores. The subgroups involve information from all domains,
although the 5 subgroups shown in Table 7 suggest otherwise.



Table 7. First five subgroups returned by each quality measure. The ... for ϕχ2(s) in-
dicate that more than five subgroups share the same score and size. The five subgroups
shown here are an arbitrary selection of this larger group

ϕavg(s) score size

gene2gene = CDK3 ∧ gene2gene = CDC2 -151.1 5
gene2gene = CDC25A ∧ gene2gene = CDK3 -243.5 5
gene2gene = CDC7 ∧ func = GO:0003677: DNA binding -354.2 7
pfam = MCM ∧ func = KEGG:04110: Cell cycle -409.3 6
gene2gene = CDK3 ∧ gene2gene = CDK2 -414.8 5

ϕmt(s) and ϕz(s) score size

func = GO:0005634: nucleus ∧ func = GO:0007049: cell cycle 46692/9.34 230
func = GO:0005515: protein binding ∧ func = GO:0005634: nucleus 45416/9.08 1105
func = GO:0051301: cell division 44643/8.93 144
func = GO:0007049: cell cycle 43844/8.77 343
func = GO:0007067: mitosis 43542/8.71 111

ϕt(s) score size

gene2gene = CDC2 ∧ gene2gene = CDK3 137.3 5
func = GO:0007067: mitosis ∧ gene2gene = CDC20 136.1 6
func = GO:0005634: nucleus ∧ pfam = Kinesin 85.5 5
func = GO:0007067: mitosis ∧ gene2gene = E2F4 79.9 6
gene2gene = CDC25A ∧ gene2gene = CDK3 63.3 5

ϕχ2(s) score size

pfam = zf-UBR 17307 5
pfam = zf-C2HC 17307 5
pfam = zf-AN1 17307 5
pfam = WSC 17307 5
pfam = Vps4 C 17307 5
...

ϕwmw(s) score size

func = GO:0005634: nucleus 9.54 3128
func = GO:0007049: cell cycle ∧ func = GO:0005634: nucleus 9.40 230
func = GO:0005515: protein binding ∧ func = GO:0005634: nucleus 9.39 1105
func = GO:0051301: cell division 8.97 144
func = GO:0007049: cell cycle 8.86 343

ϕmmad(s) score size

func = GO:0005634: nucleus 0.1577 3128
func = GO:0016020: membrane 0.1544 3466
func = GO:0005515: protein binding 0.1540 3152
func = GO:0016021: integral to membrane 0.1109 2543
func = GO:0016021: integral to membrane ∧ func = GO:0016020: membrane 0.098 2234
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Fig. 1. The normalized evaluation values for numeric and ordinal Subgroup Discovery,
for the first 100 subgroups.

7 Discussion and Conclusions

In this paper, we have presented a list of eight quality measures for ranked
applications, with a variety of properties. Whether the different characteristics of
each measure are beneficial or not often depends on the application domain and
the specific demands of the analyst. By listing the basic properties in Tables 2 and
3, and assessing the match with our four intuitions in Table 6, we have provided
some detailed guidelines on how to choose an appropriate quality measure for a
given SD task. Furthermore, we have demonstrated the relative effectiveness of
each quality measure in an important biological application, giving more specific
input as to the question of what measure to use. Here, we summarize some of
the conclusions, and give some suggestions for the optimal choice of measure.

The first choice to consider is whether the provided (partial) ranking is de-
rived from some continuous measure (such as the score in the neuroblastoma
application), or whether the ranking is based on a discrete process (such as a
series of binary comparisons), as is customary in for example sports. In the latter
case, an ordinal setting is obvious, and the three ordinal measures are applicable:
ϕroc(s), ϕmwm(s), and ϕmmad(s). In the case where both a rank and a score are
available, one has the choice to use either target, resulting in either a ordinal
setting, or both an ordinal and regression setting, respectively. The difference
between using the rank and the score is a question of distribution that may
sometimes be hard to answer. In general, it is wise to choose the target that
allows for the most clear distinction. For example in cycling, a final sprint may
show only marginal differences in time (actually all runners in the same group
will typically be assigned the same time), whereas the ranking is crucial. In this
case, the ordinal setting is obvious, and only three measures remain.

A further reduction in choice of measure is governed by the presence of ties. If
the ranking is partial, this immediately rules out ϕroc(s). All remaining measures
can naturally deal with partial rankings.



A third issue to be considered is whether the size of the subgroup should be
a factor in evaluating the candidate subgroups (Intuition I1). If the size of the
subgroup is not an issue, except for a minimum size constraint not included in
the measure, there may be a preference for ϕroc(s) (ordinal), ϕavg(s), ϕχ2(s),
and to a lesser extent ϕt(s) (regression). In the more obvious case where larger
subgroups should be encouraged, the remaining four measures work well. In this
case, a minimum subgroup size constraint may be dispensed with.

Finally, when dealing with two order-equivalent measures, the ranking of
found subgroups is of course identical. For this reason, the choice between ϕz(s)
and ϕmt(s) is arbitrary. Still, we suggest using ϕz(s), as this produces ‘nor-
malized’ values, and thus allows easy interpretation of scores across different
domains. Note that this contradicts the traditional use of ϕmt(s) in SD for re-
gression.

In the neuroblastoma application, the use of ϕroc(s) is not an option, due
to the presence of ties. Encouraging Intuition I1 is really a matter of taste here.
Larger subgroups, as produced by for example ϕz(s) and ϕmmad(s), may be
interesting as they uncover larger trends in the gene ranking. However, the high-
level findings such as ‘cell cycle’ and ‘mitosis’ are often met with skepticism by
the domain experts as they are well-known in cancer research, and not specific
to the disease under investigation. For this reason, size-ignorant measures may
be more desirable and provide more detailed information (e.g. the CDK3/CDC2
combination). It should be noted that the obvious findings particularly common
in gene set enrichment are to some degree a result of the Gene Ontology [4],
with its hierarchy of functions. More surprising findings turn up in the ranking
of subgroups by ϕz(s), once the first say ten obvious results are skipped. The
same happens when focusing on background knowledge that inherently leads to
smaller subgroups, such as the gene2gene database.

7.1 Conclusion

Although thus far, there has been limited interest in the analysis of ranked data,
or in numeric and ordinal Subgroup Discovery for that matter, we have argued
and demonstrated that ranked SD is an import asset to the Data Miner’s toolbox.
Furthermore, we have explained the large range of application areas where the
analysis of ranked data is required, with Bioinformatics being an important
example.

The Gene Set Enrichment experiments on neuroblastoma show that ranked
SD can perform well. Patterns that have been found doing extensive research,
have also been found using the more inexpensive techniques described in this
paper. Given that known good patterns have been reproduced, the equally scor-
ing patterns not familiar to the domain experts can be expected to represent
reliable biological knowledge also. In this sense, SD in general, and ranked SD
specifically, can aid domain experts in their research, and produce hypotheses
that can be easily validated using traditional biological techniques.
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Jožef Stefan International Postgraduate School, 2007. http://cs.nyus.edu.mk/

trajkovski/data/phd_thesis.html.
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