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Abstract 
 
Discovering decision trees is an important set of techniques in KDD, both because of their simple 
interpretation and the efficiency of their discovery. One of their disadvantages is that they do not 
take the structure of the mining object into account. By going from the standard single-relation 
approach to the multi-relational approach as in ILP this disadvantage is removed. However, the 
straightforward generalization loses the efficiency of the standard algorithms. In this paper we 
present a framework that allows the efficient discovery of multi-relational decision trees through 
the exploitation of the domain knowledge encoded in the data model of the database. 
 
Introduction 
 
The induction of decision trees has been getting a lot of attention in the field of 
Knowledge Discovery in Databases over the past few years.  This popularity has been 
largely due to the efficiency with which decision trees can be induced from large 
datasets, as well as to the elegant and intuitive representation of the knowledge that is 
discovered.  However, traditional decision tree approaches have one major drawback.  
Because of their propositional nature, they can not be employed to analyse relational 
databases containing multiple tables.  Such databases can be used to describe objects with 
some internal structure, which may differ from one object to another.  The means to 
describe groups of such objects in terms of occurrence of a certain substructure are 
simply not available in propositional (attribute-value) decision trees. 
 
This limitation of propositional decision trees has been overcome by an algorithm called 
Tilde [2, 3].  The approach taken there is to go from propositional to first order 
representations of objects, and to use first order logic to represent decisions in the tree.  
The trees that this algorithm produces are called first order logical decision trees.  
Because of the richer formalism that is used, first order logical decision trees do allow the 
representation of patterns within a set of structured objects.  However, Tilde assumes that 
objects are represented in first order logic rather than as collections of records in a 
relational database, and thus does not benefit from the opportunities for optimisation that 
are provided by a relational representation.  In this paper, we present an alternative 
approach that does provide the means to induce decision trees from structural 
information.  We call such decision trees multi-relational decision trees, in line with a 
previously proposed multi-relational data mining framework [8, 9]. 
 
In order to be able to induce decision trees from a large relational database efficiently, we 
need a framework with the following characteristics: 



1.  Both attribute-value and structural information are included in the analysis. 
2.  The search space is drastically pruned by using the constraints that are available in the 
data model.  This means that we are considering only the structural information that is 
intended by the design of the database, and we are not wasting time on potentially large 
numbers of conceptually invalid patterns. 
3.  The concepts of negation and complementary sets of objects are representable.  
Decision trees recursively divide the data set up into complementary sets of objects.  It is 
necessary that both the positive split, as well as the complement of that, can effectively 
be represented. 
4.  Efficiency is achieved by a collection of primitives that can be used to summarise both 
attribute-value and structural information.  The use of data mining primitives, an effective 
and accepted means of achieving efficiency in many propositional approaches, should be 
generalised in order to work with the new structural information. 
5.  The framework can be implemented by a dedicated client/server architecture.  This 
requires that a clear separation between search process and data processing can be made.  
This enables the data processing part (usually the main computational bottleneck) to be 
implemented on a scalable server. 
 
Only two of these requirements are met by algorithms for inducing first order logical 
decision trees, as described in [2, 3].  Specifically the items 1. and 3. are addressed by 
this approach, but little attention has been giving to efficient implementations.  The 
concepts addressed in item 3. are partially solved by representing the whole decision tree 
as a decision list in Prolog that depends heavily on the order of clauses and the use of 
cuts.  By doing so, the problem of representing individual patterns associated with 
internal nodes or leafs of the tree is circumvented.  Our previous work on a multi-
relational data mining framework, described in [8, 9], covers four of these five 
characteristics.  The problem of handling negation and complementary sets of objects 
(item 3.) has not been addressed, and will be considered in more detail in this paper. 
 
Propositional decision trees typically divide some set of objects into two complementary 
subsets, in a recursive manner [15].  This decision is made by applying a simple 
propositional condition to the current set of objects.  One branch of the tree represents the 
set of objects that adhere to the conjunction of the original list of conditions and the new 
condition, whereas the other branch selects the set of objects for which the conjunction of 
the original list of conditions and the negation of the new condition holds.  This 
demonstrates that in an attribute-value environment complementary patterns are produced 
by simply negating the additional condition.  In a multi-relational environment, 
producing such a complement is less trivial.  Say we are considering people and the 
structure of their household, for example.  If we have established that the set of people 
who have at least one child is interesting, we might want to split this set into the set of 
people who have a son, and the complement of that set.  Clearly, this complement is not 
equal to the set of people who have a daughter, as this does not exclude people who have 
both sons and daughters.  Rather, the complement is equal to the set of people who do 
have a child, but for whom none of the children are male. 
 
The outline of this paper is as follows.  In Multi-Relational Data Mining we introduce 



the basic concepts involved with knowledge discovery in a relational database.  The issue 
of representing patterns within such databases is addressed in Multi-Relational 
Patterns.  The extended graphical language for describing such patterns is defined in 
Selection Graphs.  How these selection graphs support the induction of decision trees is 
described in Multi-Relational Decision Trees, where we present a generic algorithm for 
multi-relational decision tree induction.  We end with some conclusions and future work 
in Conclusion. 
 
 
Multi-relational data mining 
 
The attribute-value paradigm, which includes many common Data Mining algorithms, 
only allows the analysis of fairly simple objects.  It requires that each object can be 
described by a fixed set of attributes each of which can only have a single (unstructured) 
value.  To be able to represent more complex and structured objects, one has to employ a 
relational database containing multiple tables.  Each object can be described by multiple 
records in multiple tables.  It is clear that in order to be able to handle the structural 
information that is represented by these records, changes will have to be made to existing 
algorithms. 
 
We will assume that the data to be analysed is stored in a relational database [4, 17].  A 
relational database consists of a set of tables and a set of associations (i.e. constraints) 
between pairs of tables describing how records in one table relate to records in another 
table.  Both tables and associations are also known as relations, so we will use the former 
terminology to be able to distinguish between the two concepts. An association between 
two tables describes the relationships between records in both tables.  The nature of this 
relationship is characterised by the multiplicity of the association.  The multiplicity of an 
association determines whether several records in one table relate to single or multiple 
records in the second table.  Also, the multiplicity determines whether every record in 
one table needs to have at least one corresponding record in the second table.  More 
formally, we define the following two predicates related to the multiplicity of an 
association A between two tables P and Q. 
 
Definition 1 Multiple(A, P) iff every record in Q may correspond to multiple records in 
P. 
 
Definition 2 Zero(A, P) iff a record in Q may have no corresponding record in P. 
 
Note that these predicates are defined both for P and Q, and both predicates may or may 
not hold for either P or Q. This way there are 16 different possible multiplicities for 
association A. 
 
A special case of an association between two tables is a foreign key relation.  A foreign 
key relation from a foreign key in table P to a primary key in table Q is an association for 
which the following hold: 
 Multiple(A, P), Zero(A, P), not(Multiple(A, Q)), not(Zero(A, Q )) 
Most associations in a physical data model will be foreign key relations. 



 

 
Example 1 Figure 1 shows an example of a data model that describes parents, children 
and toys, as well as how each of these relate to each other.  We will be referring to this 
example throughout this paper.  The data model shows that parents may have zero or 
more children, children may have zero or more toys, and parents may have bought zero 
or more toys.  Note that toys owned by particular child may not necessarily have been 
bought by their parents.  They can be presents from other parents.  Also note that children 
have one parent (for simplicity). 
 
Even though the data model consists of multiple tables, there is still only a single kind of 
objects that is central to the analysis. You can choose the kind of objects you want to 
analyse, by selecting one of the tables as the target table.  Each record in the target table, 
which we will refer to as t0, will now correspond to a single object in the database. Any 
information pertaining to the object which is stored in other tables can be looked up by 
following the associations in the data model.  If the data mining algorithm requires a 
particular feature of an object to be used as a dependent attribute for classification or 
regression, we can define a particular target attribute within the target table. 
 
Example 2 In figure 1, the highlighting of the attribute Car in the Parent table indicates 
that Parent is the target table and Car is the attribute of interest, the target attribute.  This 
means that our primary interest is in the parents, and that we will be considering different 
sets of parents in order to come up with good indicators for classifying parents as car 
owners or not. 
 
The idea of mining from multiple tables is not a new one.  It is being studied extensively 
in the field of Inductive Logic Programming (ILP) [6, 11].  However, these approaches 
are mostly based on data stored as Prolog programs, and little attention has been given to 
data stored in relational database and to how knowledge of the data model can help to 
guide the search process [1, 12, 19].  Nor has a lot of attention been given to efficiency 
and scalability issues.  Conceptually, however, there are many parallels between ILP and 
multi-relational data mining. Where ILP can be seen as learning from a set of predicates, 
multi-relational data mining can be seen as learning from a relational database.  

Figure 1 The data model of our example database. 



Extensional predicates, i.e. those predicates for which only ground facts exist, are the 
counterparts of tables in a relational database.  Intentional predicates, i.e. those predicates 
for which also rules are given, correspond to the concept of views. However, multi-
relational data mining differs from ILP in three aspects. Firstly, it is restricted to the 
discovery of non-recursive patterns. Secondly, the semantic information in the database is 
exploited explicitly. Thirdly, the emphasis on database primitives ensures efficiency. 
 
Multi-relational patterns 
 
In our search for knowledge in relational databases we want to consider not only 
attribute-value descriptions, as is common in traditional algorithms, but also the structural 
information which is available through the associations between tables.  We will refer to 
descriptions of certain features of multi-relational objects as multi-relational patterns.  
We can look at multi-relational patterns as small pieces of substructure which we wish to 
encounter in the structure of the objects we are considering. For example, if we are 
considering a database of chemical compounds, a multi-relational pattern might describe 
a subgroup of the compounds by listing some of the elements and bonds between them 
[5]. In the context of occurrence of a particular substructure within a multi-relational 
object, we introduce the following definition. 
 
Definition (cover)  A multi-relational object is covered by a multi-relational pattern iff 
the substructure described by the multi-relational pattern, in terms of both attribute-value 
conditions and structural conditions, occurs at least once in the multi-relational object. 
 
An alternative view on multi-relational patterns is that of selections within the relational 
database.  A multi-relational pattern implies a subset of the available multi-relational 
objects, and a range of multi-relational patterns might be considered, in order to examine 
the interestingness of the associated subset. The interestingness of the subset may be 
defined in terms of its size, or in terms of the distribution of some dependent attribute, for 
classification for example.  With respect to the size of the associated subset we define the 
following. 
 
Definition (support, frequent)  The support of a multi-relational pattern within a 
relational database is the number of objects within this database that are covered by the 
multi-relational pattern.  Patterns with a large support, usually above some predefined 
threshold, will be referred to as frequent. 
 
As was explained in [8, 9], we view multi-relational data mining as the search for 
interesting multi-relational patterns.  The multi-relational data mining framework allows 
many different search paradigms, each of which are multi-relational generalisations of 
well-known attribute-value search algorithms.  Within the search paradigms we can 
distinguish two approaches: 
• searching for local models (nuggets).  This approach involves searching for 

interesting patterns which are good descriptions of some subset of the whole 
database.  Each pattern may be part of a rule which only makes a statement about 
the elements of this subset, i.e. which is local model.  Usually there is no relation 
between each of the discovered local models.  This means that the local models 



do not necessarily cover the complete database, may be overlapping, and may 
even be contradictory. 

• Searching for global models.  This approach involves searching for sets of 
interesting patterns which together form a complete description or explanation of 
the whole database.  The resulting patterns are strongly related, and are usually 
organised in a decision tree of some sorts.  This means that the whole database is 
progressively divided into complementary and non-overlapping subsets.  We saw 
in previous sections that being able to express such complementary patterns is 
essential and nontrivial. 

Both approaches towards knowledge discovery are elegantly supported by a top-down 
approach [2, 3, 5, 7, 8, 9, 13, 15, 19]. Some examples of a top-down approach to local 
model searching in the context of multi-relational data mining are given in [ 5, 8, 9, 13, 
19]. Similarly, the induction of tree like structures from relational databases is introduced 
in [2, 3, 15].  Each of these top-down approaches share the idea of a refinement operator.  
Whenever a promising pattern is discovered, a list of refinements will be examined.  
When we speak about refinement of a multi-relational pattern, we are referring to an 
extension of the actual description of the pattern, which results in a new selection of 
objects which is a subset of the selection associated with the original multi-relational 
pattern.  Recursively applying such refinement operators to promising patterns results in 
a top-down algorithm which zooms in on interesting subsets of the database. 
 
Taking into account the above discussion of multi-relational data mining and top-down 
approaches, we can formulate the following requirements for a multi-relational pattern 
language.  In the following section we will define a language which satisfies these 
requirements.  Descriptions of multi-relational patterns should 
• reflect the structure of the relational model.  Sticking close to the structure of the 

relational model allows for easier understanding of the pattern.  Also, it is easier 
to enforce that the pattern makes sense given the referential constraints in the data 
model.  On an implementation level, it is easier to check the coverage of an object 
if the underlying data structure corresponds to the structure of a pattern. 

• be intuitive. Structural or first order logical descriptions, notably those involving 
lots of structural parts and negation, are notoriously hard to interpret by human 
beings.  Any step possible to improve human understanding should be taken. 

• support atomic, local refinements.  Because refinements produce subsets which 
are somewhat similar to the original set, we prefer the actual descriptions, i.e. the 
multi-relational patterns, to be similar to the original pattern.  This means that any 
refinement operator should preferably be some small change rather than the 
complete re-writing of the original pattern. 

• allow refinements which are complementary. This means that if there is a 
particular refinement to a multi-relational pattern which produces a certain subset, 
there should also be a complementary refinement which produces the 
complementary subset. 

 
Selection graphs 
 
In order to describe the constraints related to a multi-relational pattern, we introduce the 



concept of selection graphs: 
 
Definition 4 A selection graph G is a directed graph (N, E), where N is a set of triples (t, 
C, s), t is a table in the data model and C is a, possibly empty, set of conditions on 
attributes in t of type t.a operator c; the operator is one of the usual selection operators, 
=, > etc. s is a flag with possible values open and closed.  
E is a set of tuples (p, q, a, e) called selection edges, where p and q are selection nodes 
and a is an association between p.t and q.t in the data model.  e is a flag with possible 
values present and absent. The selection graph contains at least one node n0 that 
corresponds to the target table t0.  
 
Selection graphs can be represented graphically as labelled directed graphs.  The value of 
s is indicated by the absence or presence of a cross in the node, representing the value 
open and closed respectively.  The value of e is indicated by the absence or presence of a 
cross on the arrow, representing the value present and absent respectively. 
 
Intuitively, selection graphs can be interpreted as follows.  Every edge between p and q, 
together with the associated conditions q.C, imposes some constraints on how multiple 
records in table q.t relate to a single record in table p.t.  The association between p.t and 
q.t imposes some grouping on the records in q.t, and the combination of edge and 
conditions selects some of these groups in q.t, and thus selects some records in p.t.  
Multiple edges coming from one node simply indicate multiple conditions on the records 
belonging to that node. Working with statements about groups of records is exactly what 
makes multi-relational data mining more powerful than propositional approaches.  Such a 
grouping is demonstrated below. 

 
A present edge combined with a list of conditions selects those groups for which there is 
at least one record that respects the list of conditions.  An absent edge combined with a 
list of conditions selects only those groups for which there is not a single record that 
respects the list of conditions. The selection associated with any subgraph is the 
combined result of all such individual constraints within the subgraph on groups of 
records.  This means that any subgraph that is pointed to by an absent edge should be 
considered as a joint set of negative conditions.  The flag s associated with nodes of the 
selection graph has no effect on the selection.  Rather, it is used to indicate whether a 
particular node in a selection graph is a candidate for refinement. 
 
Example 3 The following selection graph selects those parents that have at least one 
child with a toy, but for whom none of these children are male: 



 
The following algorithm shows how selection graph can be translated to SQL.  The 
translation provides a formal semantics for selection graphs.  Resulting SQL statements 
will not be used in actual implementations, as special-purpose calls in a dedicated 
architecture can be processed far more efficiently.  The algorithm will produce a list of 
tables table_list, a list of join conditions join_list, and a list of conditions condition_list, 
and combine these to produce an SQL-statement.  The algorithm effectively produces a 
join of all the tables associated with an open node.  For each subgraph attached to an 
absent edge, a subquery is produced by calling the translate_subgraph procedure.  The 
fact that we state select distinct in the main query rather than select is caused 
by the fact that a record in t0 may be covered by the selection graph in multiple ways. 
Since the target table represents our objects, they should be counted only once. 
 
translate(S : Selection Graph)  
 
 table_list := ’’ 
 condition_list := ’’ 
 join_list := ’’ 
 for each node i in S do  
  if (i.s = ’ open ’) 
   table_list.add(i.table_name + ’ T’ + i) 
   for each condition c in i do 
    condition_list.add(’T’ + i + ’.’ + c) 
 for each edge j in S do 
  if (j.e = ’present’) 
   if (j.right_node.s = ’ open ’) 
     join_list.add(  
     j.left_node + ’.’ + 
     j.left_attribute + ’ = ’ +  
     j.right_node + ’.’ +  
     j.right_attribute) 
  else 
    join_list.add(  
    j.left_node + ’.’ + 
    j.left_attribute + ’ not in ’ +  
    translate_subgraph(subgraph(S, j.right_node), j.right_attribute))  
 return ’select distinct’ +  
  ’ T0.’ +  n0.primary_key + 
  ’ from ’ + table_list + 
  ’ where ’ + join_list +  
  ’ and ’ + condition_list 
 

Child 

Parent 

Child 

Gender = ’M’ 

Toy 

Toy 



translate_subgraph(S : Selection Graph, K : Key)  
 
 table_list := ’’ 
 condition_list := ’’ 
 join_list := ’’ 
 for each node i in S do  
  table_list.add(i.table_name + ’ T’ + i) 
  for each condition c in i do 
   condition_list.add( ’T’ + i + ’.’ + c) 
 for each edge j in S do 
   join_list.add(  
   j.left_node + ’.’ + 
   j.left_attribute + ’ = ’ +  
   j.right_node + ’.’ +  
   j.right_attribute) 
 return ’select ’ +  
  ’ T0.’ +  K + 
  ’ from ’ + table_list + 
  ’ where ’ + join_list +  
  ’ and ’ + condition_list 
 
Example 4  The algorithm translate will produce the following SQL statement for the 
selection graph given in example 3: 
 
 select distinct T0.Name 
 from Parent T0, Child T1, Toy T2 
 where T0.Name = T1.ParentName and T1.Name = T2.OwnerName 
 and T0.Name not in 
  (select T3.ParentName 
   from Child T3, Toy T4 
   where T3.Name = T4.OwnerName and T3.Gender = ’M’) 
 
Refinements As was described earlier, the selection graphs will be used to represent sets 
of objects belonging to nodes or leafs in a decision tree.  Whenever a new split is 
introduced in the decision tree, we are in fact refining the current selection graph in two 
ways.  We will be using the following refinement operators of a selection graph G as 
potential splits in the multi-relational decision tree.  The refinements are introduced in 
pairs of complimentary operations: 
 
• add positive condition.  This refinement will simply add a condition to a selection 

node in G without actually changing the structure of G. 

• add negative condition.  In case the node which is refined does not represents the 
target table, this refinement will introduce a new absent edge from the parent of 
the selection node in question.  The condition list of the selection node will be 
copied to the new closed node, and will be extended by the new condition.  If the 
node which is refined does represent the target table, the condition is simply 
negated and added to the current list of conditions for this node. 

C ∧ c 



• add present edge and open node.  This refinement will instantiate an associations 
in the data model as a present edge together with its corresponding table and add 
these to G.   

 
• add absent edge and closed node.  This refinement will instantiate an associations 

in the data model as an absent edge together with its corresponding table and add 
these to G.   

 
 
This set of refinements is the main source of efficiency for our multi-relational data 
mining framework.  By only allowing the addition of edges when consistent with the data 
model, unnecessary and invalid patterns will be pruned from the search space.  The four 
refinements exploit the existence of associations between tables for optimisation.  Apart 
from using information about the existence of associations, we also use the multiplicity of 
available associations in order to further prune the search space.  This is explained in 
more detail in [8, 9]. 
 
Multi-relational decision trees 
 
The induction of decision trees in first order logic has been studied by several researchers 
[2, 3, 10, 18].  Each of these approaches share a common Divide and Conquer strategy, 
but produce different flavours of decision trees.  For example [10] discusses the induction 
of regression trees, whereas [3] discusses the induction of decision trees for clustering.  In 
[2] an overview is given of potential uses of decision trees within a single framework.  
However, these papers have largely focused on induction-parameters such as the choice 
of splitting criterion or stopping criterion.  None of these papers provide a good solution 
for the representation of patterns associated with the leaves and internal nodes of the 
decision tree.  In this section we give a generic algorithm for the top-down induction of 
multi-relational decision trees within the multi-relational data mining framework.  It 
illustrates the use of selection graphs, and specifically the use of complementary selection 
graphs in the two branches of a split. 
 
Top-down induction of decision trees is basically a Divide and Conquer algorithm.  The 
algorithm starts with a single node at the root of the tree which represents the set of all 
objects in the relational database.  By analysing all possible refinements of the empty 
selection graph, and examining their quality by applying some interestingness measure, 

C ∧ c 

C 



we determine the optimal refinement.  This optimal refinement, together with its 
complement, are used to create the patterns associated with the left and the right branch 
respectively.  Based on the stopping criterion it may turn out that the optimal refinement 
and its complement do not give cause for further splitting, a leaf node is introduced 
instead.  Whenever the optimal refinement does provide a good split, a left and right 
branch are introduced and the procedure is applied to each of these recursively. 
 
 build_tree(T : tree, D : database, P : pattern) 
 
 R := optimal_refinement(P, D)  
 if stopping_criterion(R) 
  T := leaf(P) 
 else 
  Pleft := R(P) 
  Pright := Rcompl(P) 
  build_tree(left, D, Pleft) 
  build_tree(right, D, Pright) 
  T := node(left, right, R)  
 
The function optimal_refinement takes the current pattern P and considers every possible 
generic positive refinement with respect to the data model of D. For each of these generic 
refinements a multi-relational data mining primitive call is sent to the server that handles 
the data, and the necessary statistics are retrieved.  The statistics describe the support of 
all possible refinements derived from the current generic refinement.  However, these 
counts also imply the support of the complementary negative refinements.  These two 
sets of counts are used to compute the interestingness measure of choice. This process is 
repeated for every possible generic positive refinement and the optimal refinement is 
reported.  Which refinements are candidates is governed by the structure of the data 
model of D, and notably the multiplicity of the associations within this data model, as is 
explained in more detail in [8, 9]. 
 
The function stopping_criterion determines whether the optimal refinement leads to a 
good split based on the statistics associated with the optimal refinement and its 
complement.  A range of stopping criteria can be used, depending on the induction 
paradigm (classification, clustering, regression, etc.), but the actual choice is immaterial 
to the present discussion. 
 
Example In order to illustrate the workings of the above algorithm we apply it to a 
classification problem within our example database shown in figure 1. Assume Parent is 
our target table and we wish to determine what influences the ownership of a car, i.e. the 
value of the attribute Car. We start with an empty selection graph which represents all 
parents in our database. 

  
By taking into account the current selection graph and the available attributes and 
associations in the data model, we get the following list of possible generic positive 

Parent 



refinements: 
• add condition Parent.Age > x 
• add condition Parent.Income > x 
• add edge and node from Parent to Child 
• add edge and node from Parent to Toy 
Every refinement is tested and it turns out that having a child or not (the penultimate 
refinement) is the best indicator for owning a car or not. The following two 
complementary selection graphs are created for the left and the right branch respectively. 

   
The induction process is now continued recursively for the set of parents who have a 
child, and for the set of parents who don’t (strictly speaking not really parents) 
respectively.  We will only demonstrate the effect for the left branch.  At this point in the 
tree the previous list of refinements is still valid, and completed with the following extra 
refinements: 
• add condition Child.Age > x 
• add condition Child.Age < x 
• add condition Child.Gender = female 
• add condition Child.Gender = male 
• add edge and node from Child to Toy 
The same process of finding the optimal refinement is repeated, and this time a condition 
on the age of the child is introduced.  The left branch will now represent the set of parents 
who have an adult child: 

The right branch will represent the set of parents who do have a child, but for whom none 
of the children are adults: 

The resulting decision tree will be as follows: 
  
 

Parent Child Parent Child 

Parent Child 

Age > 18 

Child 

Parent 

Child 

Age > 18 

Parent Child 



 
 
Conclusion 
 
In this paper we have presented a framework that allows the efficient discovery of multi-
relational decision trees. The main advantage above the standard decision tree algorithms is the 
gain in expressiveness. The main advantage above the ILP approach towards decision trees is the 
gain in efficiency achieved by exploiting the domain knowledge present in the data model of the 
database. One of the main remaining challenges is to extend this framework such that the 
selection graphs may contain cycles. Such an extension would, e.g., allow to refine into parents 
that have not bought their own children toys. 

Parent 

Parent Child 

Parent Child 

Parent Child 

Age > 18 

Child 

Parent 

Child 

Age > 18 

Parent Child 

Parent Child 

Income > 50  

Income <= 50  
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