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Abstract Numeric data has traditionally received little attention in the field of 
Multi-Relational Data Mining (MRDM). It is often assumed that numeric data 
can simply be turned into symbolic data by means of discretisation. However, 
very few guidelines for successfully applying discretisation in MRDM exist. 
Furthermore, it is unclear whether the loss of information involved is 
negligible. In this paper, we consider different alternatives for dealing with 
numeric data in MRDM. Specifically, we analyse the adequacy of discretisation 
by performing a number of experiments with different existing discretisation 
approaches, and comparing the results with a procedure that handles numeric 
data dynamically. The discretisation procedures considered include an 
algorithm that is insensitive to the multi-relational structure of the data, and two 
algorithms that do involve this structure. With the empirical results thus 
obtained, we shed some light on the applicability of both dynamic and static 
procedures (discretisation), and give recommendations for when and how they 
can best be applied. 

1 Introduction 

Whereas numeric data is at the core of the majority of propositional Data Mining 
systems, it has been largely overlooked in Multi-Relational Data Mining (MRDM). 
Most MRDM systems assume that the data is a mixture of symbolic and structural 
data, and if the source database contains numbers, they will either have to be filtered 
out or pre-processed into symbolic values. Apart from historical reasons – symbolic 
representations are popular in the logical roots of MRDM –, the full treatment of 
numeric data comparable to propositional approaches is mostly ignored for reasons of 
simplicity and efficiency. MRDM is characterised by large hypothesis spaces, and the 
inclusion of continuous domains that offer a large range of (very similar) refinements 
is thought to make MRDM intractable. Most multi-relational systems rely on so-
called discretisation procedures to reduce the continuous domains to more 
manageable symbolic domains of low cardinality, such that the search remains 
realistic. The resulting loss of precision is assumed to be negligible. 

In this paper, we survey a number of existing approaches to dealing with numeric 
data in MRDM, with the aim of empirically determining the value of each of these 
approaches. These approaches include a number of pre-processing procedures 
suggested recently [6, 2], as well as one of the few MRDM algorithms that deal with 
numbers dynamically, developed by the authors of this paper [2, 4]. The discretisation 
procedures include a simple algorithm that considers each table in isolation, and 



discretises each numeric attribute on the basis of the distribution of its values, 
regardless of any other tables connected to the current table. Two further 
discretisation procedures do involve the multi-relational structure of the database, and 
aim at finding good intervals, keeping in mind that the resulting symbolic attributes 
will be used in the context of the other tables in the database. The algorithm that deals 
with numbers dynamically does not require any pre-processing of the data. Rather 
than fixing a number of intervals prior to the analysis, it will consider the numeric 
data for a hypothesis at hand, and determine thresholds that are optimal for the given 
context. Especially at deeper levels of the search, where reasonably specific 
subgroups are considered, relevant thresholds will differ significantly from those 
determined on the whole dataset. 

We test the four approaches experimentally on four well-known multi-relational 
datasets where numeric attributes play an important role: Mutagenesis (two varieties), 
Financial and Musk. With these experiments, we aim to shed some light on when and 
how each approach can best be applied. Furthermore, we hope to get some guidelines 
for important parameters of the discretisation procedures, such as the coarseness of 
the discretisation and the choice of representation. The experimental results are 
compared to those obtained on databases where all numeric information is removed, 
in order to get a baseline for the procedures that do (to some extent) involve the 
continuous domains. 

2 Foundations 

In the class of discrete patterns that we aim at (decision trees, rules, etc.), dealing with 
numeric data comes down to choosing numeric thresholds that form useful subgroups. 
Clearly, the distribution of numeric values, and how the target concept depends on 
this distribution is essential. In propositional data mining, choosing thresholds is fairly 
straightforward, as there is a one-to-one correspondence between occurring values 
and individuals. In MRDM however, we are dealing with non-determinate (i.e. one-
to-many) relations between tables. In many cases, numeric attributes do not appear in 
the target table, and multiple values of the attribute are associated with a single 
structured individual. Whereas in propositional data mining, we can think of the 
whole database as a ‘cloud’ of points, in MRDM each individual forms a cloud. The 
majority of pattern languages in MRDM characterise such individuals by testing for 
the presence of values that exceed a given threshold. As the following lemma shows, 
only the largest and smallest values within each individual are relevant to include or 
exclude an individual on the basis of a single numeric test. Only these values will 
therefore be candidates for numeric thresholds. 

 
Lemma 1 Let B be a bag of real numbers, and t some real, then 
   ∃ v∈ B: v ≥ t  iff  max(B) ≥ t, 
   ∃ v∈ B: v ≤ t  iff  min(B) ≤ t. 
 
Lemma 1 furthermore demonstrates that there is a difference between the set of 

thresholds appropriate for the ≤ and the ≥ operator. This means that any procedure that 
selects thresholds will have to be performed separately for each operator. 



Choosing thresholds can roughly be done in two ways: dynamically and statically. 
A dynamic approach (see Section 3) considers the hypothesis at hand, and determines 
a collection of thresholds on the basis of the information contained in the individuals 
covered by the hypothesis in question. A static approach (see Section 4) on the other 
hand considers the entire database prior to analysis and determines a collection of 
thresholds once and for all. Typically these thresholds are then used to pre-process the 
data, replacing the numeric data with symbolic approximations. We refer to such a 
pre-processing step as discretisation. Clearly, a dynamic approach is preferable from 
an accuracy standpoint, as optimal thresholds are computed for the situation at hand. 
On the other hand, dynamic computation of thresholds makes algorithms more 
complex, and less efficient. 

In the context of discretisation, we refer to numeric thresholds as cut points. A 
collection of n-1 cut points splits the continuous domain into n intervals. A group of 
values falling in a specific interval is referred to as a bin. 

In MRDM, it makes sense to not just consider the available numeric values in the 
computation of cut-points, by also the multi-relational structure of the database. In 
general, a table is connected to other tables by associations, some of which may be 
non-determinate (a single record in one table corresponds to multiple records in 
another table). The effect of such associations is thus that records in a table can be 
divided into groups, depending on the relation to records in the associated table. 
Considering the multi-relational structure in the computation of cut points is hence 
tantamount to considering the numeric value, as well as the group the value belongs 
to. In the remainder of this paper, we refer to groups as the sets implied by this multi-
relational structure.  

3 Dynamic Handling of Numbers 

An MRDM algorithm that handles numbers dynamically considers a range of cut 
points for a given numeric attribute, and determines how each of these tentative cut 
points influences the quality of a multi-relational hypothesis under consideration. As 
the optimal cut point depends on the current hypothesis, and many hypotheses are 
considered by an MRDM algorithm, the set of relevant cut points cannot be 
determined from the outset. Rather, we will have to consider the subgroup at hand, 
and query the database for a list of relevant cut points, and associated statistics. 

In general, all values for the numeric attribute that occur in the individuals covered 
by the hypothesis at hand can act as candidate cut points. In theory, this set of values 
can be quite large, which can make the dynamic generation of cut points very 
inefficient. The MRDM system Safarii [2, 4] uses an approach that considers only a 
subset of these values, thus reducing some of the work. It relies on the observation 
from Lemma 1 that only the extreme values within a bag of numbers are relevant in 
order to test the presence of values above or below a certain cut point. Safarii uses a 
database primitive (a predefined query template) called NumericCrossTable [2] that 
selects the minimum (maximum) value within each individual covered by the current 
hypothesis, and then groups over these extreme values to produce the desired counts. 
We thus get a more reasonable number of candidate refinements. 

Unfortunately it is still not realistic to continue the search on the basis of each of 
these refinements. Safarii therefore selects from the reduced set of candidate 



refinements only the optimal one for further examination. Because the operators ≤ and 
≥ produce two different sets of candidate refinements, we essentially get two 
refinements per hypothesis and numeric attribute encountered. Note that keeping only 
the optimal refinements introduces a certain level of greediness into the algorithm. 

4 Discretisation 

In this section, we briefly outline the three methods for discretising numeric data 
to be used in our experiments. We refer to [3] for a full description. Conceptually, 
discretisation entails defining a number of consecutive intervals on the domain of a 
numeric attribute, and replacing this attribute with a nominal attribute that represents 
the interval values fall into. The three methods are identical in how numeric attributes 
are transformed based on the intervals defined. The essential difference between the 
methods lies in how the cut points between intervals are computed. 

The first method presented computes a (user-determined) number of cut points 
based on the distribution of values of the numeric attribute. It ignores the fact that 
data in a particular table will generally be considered in the context of that in other 
tables. The remaining two methods do consider the multi-relational structure of the 
data, and compute cut points assuming that discretised values will be considered after 
joining with tables that are directly attached to the table at hand. 

Because the numeric data typically appears in tables other than the target table, it 
is not always straightforward to assign a class (which is related to the target table) to 
the value. All three methods are therefore class-blind (or unsupervised): the methods 
do not consider a predefined target concept. As a result, the transformed data can be 
used on a range of class-definitions. 

Equal Height Histogram The first algorithm computes cut points regardless of 
any multi-relational structure. It simply considers every numeric attribute in every 
table in turn and replaces it by a nominal attribute that preserves as much of the 
information in the original attribute as possible. A collection of cut points is computed 
that produces bins of (approximately) equal size. Such a procedure is known as equal 
interval frequency, or equal height histogram, which is the term we will adopt. 

Equal Weight Histogram The second discretisation procedure involves an idea 
proposed by Van Laer et al. [6]. The algorithm considers not only the distribution of 
numeric values present, but also the groups they appear in. It is observed that larger 
groups have a larger impact on the choice of cut points because they have more 
contributing numeric values. In order to compensate for this, numeric values are 
weighted with the inverse of the size of the group they belong to. Rather than 
producing bins of equal size, we now compute cut points to obtain bins of equal 
weight. 

Aggregated Equal Height Histogram Like the EqualWeight algorithm, the 
AggregatedEqualHeight algorithm proposed in [2] takes the multi-relational structure 
of the database into account in the computation of the cut points. The algorithm is 
centred around the idea that not all values within a group are relevant when inquiring 
about the presence of numeric values above or below some threshold. As was outlined 
in Section 2, it suffices to consider the minimum and maximum value within a group. 
The idea of the AggregatedEqualHeight algorithm is hence to take the minimum 
value per group and compute an equal height histogram on these values, in order to 



discretise all values. The process is then repeated for the maximum per group. We 
thus get two new attributes per numeric attribute.  

 
Representation In our discussion of the different discretisation procedures, we 

have assumed that the outcome is a collection of nominal attributes, where each value 
represents one of the computed intervals. In fact when we produce n nominal values, 
we do not only lose some amount of precision (which we assume to be minimal), but 
also the inherent order between intervals. Although the inability to handle ordered 
domains (numeric or ordinal) is part of our motivation for applying discretisation, we 
can choose a representation that preserves the order information without having to 
accommodate for it explicitly. This representation involves n-1 binary attributes per 
original numeric attribute, one for each cut point. Rather than representing each 
individual interval, the binary attributes represent overlapping intervals of increasing 
size. By adding such attributes as conjuncts to the hypothesis through repeated 
refinements, a range of intervals can be considered. A further advantage of this 
representation is that the accuracy is less sensitive to the number of intervals as the 
size of the intervals does not decrease with the number of intervals. An important 
disadvantage of this representation is the space it requires. Especially with larger 
numbers of intervals, having n-1 new binary attributes per original attribute can 
become prohibitive. 

In our experiments, we will consider both the nominal and the binary 
representation, and compare the results to determine the optimal choice. We will refer 
to the latter representation as cumulative binary. 

5 Experiments 

Although we have multiple approaches to dealing with numeric data to test, we 
have chosen to apply a single mining algorithm. This allows us to sensibly compare 
results. The algorithm of choice is the Rule Discovery algorithm contained in the 
Safarii MRDM package produced by the authors [2, 4]. This algorithm produces a set 
of independent multi-relational rules. The algorithm includes the dynamic strategy for 
dealing with numbers described in Section 3. In order to test the discretisation 
procedures, we have pre-processed the different databases by generating the desired 
discretised attributes, and removing the original numeric attributes. The different 
discretisation procedures were implemented in the pre-processing companion to 
Safarii, known as ProSafarii. 

Although a range of evaluation measures and search strategies is available in 
Safarii, we have opted for rules of high novelty, discovered by means of beam search 
(beam width 100, maximum depth 6). A time limit of 30 minutes per experiment was 
selected. The algorithm offers filtering of rules by means of a computed convex hull 
in ROC space [2]. The area under the ROC curve gives a good measure of the quality 
of the discovered rule set, as it is insensitive to copies or redundant combinations of 
rules. We will use this measure (values between 0.5 and 1) to compare results. 

We will test the different algorithms on the following three well-known multi-
relational databases: 

• Mutagenesis [5]. A database containing structural descriptions of molecules. 
We use two varieties, called B2 and B3. B2 contains symbolic and structural 



information as well as a single numeric attribute describing the charge of each 
atom. B3 contains two additional attributes on the molecule-level. 

• Financial [7, 2]. A database containing seven tables, describing various 
activities of customers of a Czech bank.  

• Musk [1]. A database describing 166 continuous features of different 
conformations molecules may appear in. 

In [3] we present a detailed overview of the results obtained. We summarize the 
main conclusions in the paragraphs below. 

Discretisation Procedures Let us begin by considering how well the 
discretisation procedures perform. The table below summarises how often each 
procedure is involved in a win or a tie (no other procedure is superior). Procedures are 
compared per setting of the number of bins, in order to get comparable results. It turns 
out that AggregatedEqualHeight is clearly the best choice for Financial and Musk. 
Surprisingly, the propositional procedure EqualHeight performs quite well on 
Mutagenesis B2. The results for EqualHeight and EqualWeight on Mutagenesis B3 
are virtually identical, which should come as no surprise, as this database contains 
two powerful attributes in the target table. The multi-relational data is mostly ignored. 

In every case, the use of discretised attributes is better than not using the numeric 
information altogether, although in a few cases the advantage was minimal.  

 EqualHeight EqualWeight AggregatedEqualHeight 
Mutagenesis B2 62.5% 50.0% 37.5% 
Mutagenesis B3 75.0% 87.5% 75.0% 

Financial 0% 12.5% 87.5% 
Musk 0% 25% 75.0% 

 
Discretisation vs. Dynamic Handling So can the discretisation procedures 

compete with the dynamic approach to numeric data, or is it always best to use the 
latter? In the table below, we compare the performance of the collection of 
discretisation procedures to dynamic handling of numbers. Each row shows in how 
many of the 3×4×2=24 runs discretisation outperforms the dynamic approach. In the 
majority of cases, the dynamic approach outperforms the discretisation procedures, as 
was expected. However, for every database, there are a number of choices of 
algorithm, representation and number of bins, for which discretisation can compete, 
or even give slightly better results (see [3] for details).  

If the set of cut points considered by the dynamic approach in theory is a superset 
of that considered by any discretisation procedure, how can we explain the moderate 
performance of the dynamic algorithm in such cases? The main reason is that the 
dynamic algorithm is more greedy than the discretisation procedures, because of the 
way numeric attributes are treated. Of the many refinements made possible by the 
numeric attribute, only the optimal pattern is kept for future refinements. Therefore, 
good rules involving two or more numeric conditions may be overlooked. On the 
other hand, the nominal attributes resulting from discretisation produce a candidate 
for each occurring value, rather than only the optimal one. Because beam search 
allows several candidates to be considered, it may occur that sub-optimal initial 
choices may lead to optimal results in more complex rules. 

 



 discretisation dynamic 
Mutagenesis B2 5 19 
Mutagenesis B3 9 15 

Financial 0 24 
Musk 1 23 

 
Choice of representation The comparison between the two proposed 

representations is clear-cut: the cumulative binary representation generally gives the 
best results (see table below). The few cases where the nominal representation was 
(slightly) superior can be largely attributed to lower efficiency caused by the larger 
hypothesis space of the cumulative binary approach.  

Although the cumulative binary representation is very desirable from an accuracy 
point of view, in terms of computing resources and disk space, the cumulative binary 
approach can become quite impractical, especially with many bins. Particularly in the 
Musk database, which contains 166 numeric attributes, several limits of the database 
technology used were encountered. 

 nominal cumulative binary ties 
Mutagenesis B2 3 5 4 
Mutagenesis B3 0 9 3 

Financial 2 6 4 
Musk 5 4 7 

 
Effect of Number of Bins As has become clear, the number of bins is an 

important parameter of the discretisation procedures considered. Can we say 
something about the optimal value for this parameter? It turns out that the answer to 
this question depends on the choice of representation. Let us consider the cumulative 
binary representation. The performance roughly increases as more cut points are 
added (see the diagrams on the next page). This is because extra cut points just add 
extra opportunities for refinement and thus extra precision. The only exception to this 
rule is when severe time constraints are present. Because of the larger search space, 
there may be no time to reach the optimal result. For the nominal representation, there 
appears to be an optimal number of cut points that depends on specifics of the 
database in question. Having fewer cut points has a negative effect on the precision, 
whereas too many cut points results in rules of low support, because each nominal 
value only represents a small interval. For the Mutagenesis and Musk database, the 
optimal value is relatively low: between 2 and 4. The optimal value for Financial is 
less clear. 

6 Conclusion 

In general, we can say that the dynamic approach to dealing with numbers 
outperforms discretisation. This should come as no surprise, as the dynamic approach 
is more precise in choosing the optimal numeric cut points. It is surprising however to 
observe that in some cases, it is possible to choose parameters and set up the 
discretisation process such that it is superior. Unfortunately, it is not immediately 
clear when faced with a new database what choice of algorithm, representation and  
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coarseness produces the desired result. Essentially, it is a matter of some 
experimentation to come up with the right settings. Even then, there is no guarantee 
that the extra effort of pre-processing the data provides a substantial improvement 
over the dynamic approach. Of course, when working with a purely symbolic MRDM 
system, discretisation is mandatory. 

For discretisation, we recommend that the AggregatedEqualHeight procedure be 
tried first, as it has proven to give good results. It is worth the effort to consider 
EqualHeight as an alternative. The added value of the EqualWeight procedure over 
EqualHeight is negligible, and can therefore be ignored. 

Our experimentation shows that in general, the simple nominal representation 
commonly used in MRDM projects is sub-optimal. Moreover, this representation is 
rather sensitive to the selected number of bins. In most cases the cumulative binary 
representation is preferable. This representation should be applied with as many bins 
as is realistic, given space and time limitations. Only when time restrictions can be 
expected to have a detrimental effect on the search depth, should lower numbers be 
considered. 
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