
1

Results in Data Mining for Adaptive System Management

Arno J. Knobbe, Bart Marseille, Otto Moerbeek, Daniël M.G. van der Wallen

Postbus 2729
3800 GG Amersfoort

The Netherlands
{a.knobbe , b.marseille, o.moerbeek, d.van.der.wallen}@syllogic.com

Abstract

This paper describes the results of using
Adaptive System Management on a large-scale
site. We describe how large amounts of data,
gathered by monitoring complex computer
systems, are analyzed and present the results.
The results contain useful and unexpected
suggestions for improving the effectiveness of
managed applications and for reducing the
support effort. We also describe a number of
different Machine Learning techniques and
implementations that were used for the
application of Adaptive System Management.

Introduction

As computer networks become bigger and
bigger, it becomes more difficult to manage the
complex interaction between the different
components of the system, such as host, devices,
databases and applications. Each of these
components can affect the operation of the other
components, and ultimately the performance of
the tasks a user wants to perform.

Some events that cause a degradation of the
performance in a computer system are simple
and can easily be solved or prevented by a
human system manager. However, with the
increasing complexity of modern computer
systems, it becomes quite hard to pinpoint the
exact cause of the degradation. In most cases bad
performance is not even caused by a single,
sudden event, but by a subtle interplay between

several parameters that causes a gradual change
in performance. System management becomes a
complex optimization problem instead of a set of
simple reactive operations.

It is quite hard for human beings to get clear
insight into the operation of all components of a
complex computer system. At the same time it
becomes more and more easy to record large
quantities of data about the different components
in a computer system with the current
development of large system and network
management packages that are aimed at
monitoring the system. The application of Data
Mining techniques to these complex system
management problems [2, 6, 7, 10, Error!
Reference source not found.], called Adaptive
System Management, seems an obvious step. We
implemented and applied these ideas and
extended earlier reported approaches [10] with
first order techniques.

Adaptive System Management

The first requirement for the application of ASM
is a collection of data describing the state of the
system at regular intervals. Another very
important issue is the availability of a
measurable performance measure, in system
management terms: Service Level Agreement
(SLA). ASM is mainly based on analyzing the
influence of different system components on this
performance measure.

The data that is to be analyzed is produced by a
set of monitors. Each monitor may be a value
obtained by a particular system management
system, the result of some script, or simply a
value such as the time of day, etc. Each monitor

2

effectively corresponds to an attribute in the data
set that is produced. We assume that the
monitors produce a vector of measurements
periodically, to reflect the situation at a particular
moment, or over the interval between the
previous and current measurement. Furthermore
we assume that we are interested in the
dependencies between a single target monitor
and the remaining monitors. This can be easily
generalized to multiple targets.

If we consider each set of monitor values at a
particular moment as an example of some
relation between the monitors and the SLA, we
can apply Machine Learning algorithms to
generate approximations or partial explanations
of this relation. In the next section we will
consider a number of possible approaches that
produce different types of knowledge. Some
techniques attempt to find complete
explanations, such as decision tree induction,
some techniques only discover isolated facts
about part of the data (nuggets), such as
association rules. These techniques share a
propositional nature. Another approach is
Inductive Logic Programming (ILP), a first order
technique which is able to use background
knowledge in the learning process.

The data set that is produced by the monitors can
be used directly by propositional learning
algorithms [10]. However, a lot more
background knowledge about the structure of the
domain is available, that cannot be used to
improve the results of propositional algorithms,
such as the ones mentioned above. We are using
first order techniques, such as ILP, to incorporate
this domain information in the analysis, and
build on top of existing knowledge about the
workings of the system.

The domain information that is used in our ASM
environment consists of a collection of relations
between different components in the system and
the monitors that are defined on them. The
hierarchical description of components consists
for example of the following logical facts: an
AIX4-r1server is an AIXserver is a UNIX server
etc. An example is shown in Figure 1.

Figure 1: hierarchical modelcomponents

The description of the model consists of relations
between components. The relations between
components are for example: a disk is a part of a
machine, a machine is part of an application etc.
An example is displayed in Figure 2.

Figure 2: relational model

Techniques

A range of Machine Learning techniques can be
applied to the ASM problem. Different
techniques produce different results, and each
have their specific advantages and
disadvantages. Which technique to use depends
on the specific needs and interests of the system
administrator who is analyzing the system. We
distinguish between propositional techniques and
first order techniques that allow the inclusion of
model information.

Propositional

Decision Trees

3

Decision trees combine the advantages of good
predictive and modeling power with the
advantages of a hierarchical organization of the
discovered dependencies. By starting at the root
of the tree we can examine important
dependencies, and go into detail by proceeding
towards the leafs of the tree. From a range of
decision tree algorithms we will consider C4.5
[14].

Although decision trees can be very useful in
analyzing for example the causes of bad
performance in a network, they suffer from an
important problem that may cause particular
dependencies to be overlooked. In most cases,
monitors not only provide information about the
value of the target, but also about other monitors.
In fact monitors may share information about the
target. If a particular monitor is used as a split in
the decision tree, all information that is shared
with another monitor is used, and the other
monitors will be “overshadowed” [9, 10].

Top N

The “overshadowing” problem is quite clear
when two monitors are used of which one is
some increasing function of the other.
Unfortunately this is quite often the case for
ASM. It may therefore be useful in most cases to
not only produce a decision tree, but also a list of
monitors ordered by some measure of similarity,
for example by the information gain of the best
split on each monitor. In a way this represents
the available options at the root of the tree, the
best of which is selected as the first split. Also
rule-induction techniques may be used to
produce overlapping rules that will show
multiple dependencies. Also many monitors can
be expressed as arithmetic functions of other
monitors. Especially roughly linear dependencies
between monitors are quite common. Simple
statistical techniques such as correlation and
linear regression can also be very effective to
produce a top N.

Association Rules

In many cases monitors represent binary
information, for example the availability of a
service or application. Association rules are
ideally suited to express dependencies between
sets of these binary monitors [3, 5, 8]. Even if
monitors represent nominal values, a set of
binary monitors can be used to represent all
possible values of the original monitor. Monitors

that have numeric values, such as the response
time to a request, can be discretised first.

First order

Inductive logic programming

Inductive logic programming (ILP) [4 , 11, 12,
13, 15] offers a ‘knowledge rich’ approach to
machine learning: ILP can incorporate domain
knowledge into the modelling process in the
form of a ‘logic program’ which specifies the
links and relationships already known to be in
the domain of application, that is the background
knowledge. In the domain of ASM this
background knowledge consists of the relational
model and hierarchical decomposition of
components.

A shortcoming of the current Data Mining tools
as used in the current ASM tools is the feature
based approach (propositional modelling). This
gives results similar to: if monitorY on machine
X > 5 then Performance is low. These kinds of
results need extensive interpretation. We need to
generalize these specific results ourselves. Are
there also other machines for which this rule
holds? Such questions can of course be answered
by interpreting the result with a system manager.
On the other hand, we could use ILP to automate
part of this interpretation process. To do this we
need to supply the ILP-implementation with
information about the system. This background
information can be stated in first order logic, in
our case the background information consists of
an hierarchical description of components and a
model of how these components are related.

This type of information about the system can be
used by the ILP implementations to generalize
about results. The algorithms not only consider
individual monitors like diskio of HDisk1 on
Luxor, but can also find results with a higher
level of abstraction like diskio of a disk on an
AIXServer. Such results are obviously more
interesting for system managers, the ILP-
algorithms “speak” more their language than the
propositional algorithms.

4

Systems

In our experiments, we have used 3 systems to
analyse the data that was stored: the Syllogic
Adaptive System Management Tool, Progol
from the University of York and Tilde from the
University of Leuven.

Syllogic Adaptive System Management Tool

The Syllogic Adaptive System Management
Tool is an integrated toolbox that consists of
several modules for data collection, data storage,
system modelling, data analysis and
presentation. All functionality is accessible from
a single GUI. The analysis module consists of
the propositional techniques described in the
previous section. The results of these techniques
are presented visually to the user. In the system
modelling module the user can define the
structure of the system to be analyzed, by
visually defining relations between components.
Examples are given in Figure 1 and Figure 2.

An important problem to be solved in an
Adaptive System Management environment is
the collection of monitor data. Collecting the
data centrally may be a very expensive
operation, resulting in a lot of network-traffic,
which in turn influences the overal performance
of the system. The Syllogic ASM tool uses a
specific architecture for collecting data. The
basic component of the data collection system is
a collection object. Each collection object
performs the same action: retrieve data from the
system, which can be another collection object,
store the data in memory, file or database and
potentially propagate data to parent collection
objects. At the leaves of the tree the collection
objects retrieve data by taking measurements
(e.g. by executing programs) or reading existing
statistics (e.g. SNMP or kernel statistics). At the
internal nodes of the tree collection objects
retrieve data by collecting data from the
collection objects that are below them.
By choosing which data to propagate up and
which data to store at a collection object, it is
possible to find an effective optimization
between use of resources (network, storage,
computational power) used at collection time and
query time. Furthermore, by organizing the tree
to minimize dependencies, the system will

continue to operate, while there may be a
problem in one or more parts of the system.

Progol

Progol is an ILP system that uses a rule-based
algorithm. It searches for rules that cover as
much of the data as possible. These rules can
overlap in the data they cover. Progol [13] was
developed at Oxford University Computing
Laboratory. Progol can use intensional
background knowledge which allows learned
clauses to be incorporated for use in later
learning. It constructs a pruned top-down search
which produces guaranteed optimally short
clauses. Furthermore, it supports numerical
hypotheses using built-in functions as
background knowledge.

Tilde

Tilde [4] is a recent ILP system that builds
binary decision trees, having no overlapping
coverage. It is derived from Quinlan’s C4.5, in
that Tilde uses the same heuristics and search
strategy. However, it works with a first order
representation. Hence, it has C4.5 (when
working with binary attributes) as a special case.
Because of the use of the divide-and-conquer
strategy underlying decision tree technology,
Tilde has also proven to be very efficient and to
run on large datasets. Other features of Tilde
include the ability to handle numbers and to
perform regression.

Experiments

This experiment was done at a large site of an
airline company. In this experiment we
monitored a spare part tracking and tracing
system for aircraft. This application uses several
IBM AIX servers, an Oracle database, and
Windows PC clients in Amsterdam, Singapore
and New York. In total 250 monitors were
installed on the components of the system. These
monitors were implemented on the components
and measured among others for example cpu
load, free memory, database reads and nfs
activity. The monitors were executed every 15
minutes and stored in a database. We effictively
monitored this system for 2 months, resulting in
a table of 3500 timeslices of 250 monitors.

5

The performance was measured by simulating a
task of the application; querying a database, and
recording the access time of this database query.
The performance measure (SLA) is defined and
used as a normal monitor, it only differs in the
way it is used in the analysis. All monitors,
including the SLA, were measured at the same
interval. The Service Level Agreement was
defined as an operation on this database access
time, namely database access time < 3. This
comes down to an application-user never having
to wait more than three seconds for the answer
when performing this specific task. This task was
seen to be typical for this business system.

Furthermore, a model of the application and the
system it runs on was created. The model
consists of about 140 components, such as
servers, printers, disks and databases. All
components that are monitored are in the model
as well as the known relations between the
components. The relations are one-to-many part-
of relations. For an impression of the model see
Figure 3.

Figure 3: Business system model

Decision Tree

The tree in Figure 4 shows the decision tree
induced from the complete dataset. The most
important attribute is paging space used on
server 11. The tree states that a high value for the
monitor paging space used is the main indicator
for bad performance. The amount of used paging
space can not be influenced directly, but can be
reduced by increasing the amount of physical
memory, or limiting the number of applications
that run on this server.
The next split on CPU idle time on server 11
gives additional evidence for the fact that server
11 needs additional hardware or less intensive
usage.
The attribute filetime measures the delay on
scheduled jobs. The application updates request
from a mainframe on fixed times. The requests
are sent (in batch) from the mainframe to the
UNIX-server server 11, and then processed by
the application. The split indicates that if the
mainframe sends the file more than 2.5 minutes
late, the performances drops. This can have
multiple causes. Firstly, the network could be
down causing the mainframe to fail when trying
to send the requests and at the same time causing
the performance-measure to time out because the
database query is performed over the network.
Secondly, the application wastes CPU cycles
trying to retrieve a file which is not yet there,
because the mainframe application did not yet
put it there, which happened in more than 50%
of the cases. So, this split indicates that the way
the application recieves mainframe requests
should be improved.

Figure 4: Decision tree

6

Top N

A top N was created for this dataset. We used
information gain as ordering criterion. The
resulting top 3 is displayed in Table 1.

Attribute Threshold
Paging space used server 11 (MB) > 685.5
Client 6 ping time (millisec.) > 258.5
CPU Idle time server 5 (perc.) < 74.5

Table 1: Top 3

The attribute paging space used is discussed in
the previous section. The attribute client ping
time is the ping time to a foreign router. It is
clear that if this ping time exceeds 258.5
milliseconds the performance for foreign users is
bad, but it also indicates that influences the local
performance. It was explained by the system
manager of the airline company that these high
ping times correspond to the events that foreign
users load a complete table from the database to
their client. This table could be very big and the
network connection to foreign countries have a
narrow bandwidth. So this situation caused both
the network as well as the application to be very
busy for some time. Unfortunately, fixing this
bottle-neck is very expensive: buy more
bandwidth or redesign and reimplement a part of
the application to reduce network traffic.

The presence of the attribute CPU Idle time on
server 5 is a direct indication that this machine is
a bottle-neck for the performance of the
application.

Figure 5: Association matrix

Associations

With the association rule algorithm we induced
several types of rules. Simple rules that contain
one monitor as condition and one monitor as
conclusion are presented in an association
matrix, see Figure 5. We found several
surprising relations between individual
components of the system. A striking example is
the association of two disk IO monitors, the
correlation between the disk IO of a disk in
server 5 and a disk in server 25. After studying
the data more closely it was concluded that these
disks exhibited almost complete disjunct
operation, see Figure 6.

Figure 6: scatter plot of disjunct disks

Another use of the association rule algorithm is
the induction of rules involving (multiple)
monitors as condition and the SLA as
conclusion. We found for example the following
rules:

First order techniques

The next sections describe ILP experiments. To
compensate for the growth of the search space by
the addition of the model information and using
a first order modeling technique, we discretized
the data set into binary attributes incorporating
only values that are more than 3 times the
standard deviation above or below average. This
reduces the data set size (leaving out all

low freespace on /var/tmp on server 5
-> low performance

high paging space used on server 25 ∧
high # ftp connections on server 25
-> low performance

7

“normal” values) and simplifies the search (only
binary attributes are used). The loss of
information in this preprocessing step has been
taken for granted because the main goal of
applying first order techniques was to give a
proof of concept of the usability of ILP. Using
all values without reducing the search space may
have produced better results but also would have
dramatically increased the analysis time.

Progol

Progol was used to induce rules that incorporated
the relevant model information.

Progol generated the two rules displayed in
Figure 7.

Figure 7: progol rules

Because there is only one monitor of type
number of requests in queue, this rule is
essentially propositional. The queue contains the
requests that still have to be dealt with. This
means the application cannot handle all
incoming requests. This could mean that too
many users use the application at the same time.
The second rule means that if any monitor of
type NFS server on any server in the model is
high the performance will be low in the coming
period. Although there are just six monitors that
have type NFS server, the second rule is very
interesting because this gives a more general
description of the problem, which is that on
server 11, the network load and the usage of this
server is too high. So what we already found in
several propositional experiments (see decision
tree) is expressed here in one understandable
rule.

Tilde

Tilde was presented with the same discretized
data as Progol. Tilde induced the tree in Figure
8.

Figure 8: Tilde Decision Tree

The first split in the tree is equivalent to the
following rule:

If there is a monitor with class NFS
Server that has value high then
performance is low.

This is exactly the same result as found with
Progol. High monitors of the NFS Server class
have the greatest impact on the performance. The
next split is on high monitors of class Trace.
These monitors are the different performance
measures defined for this application. So, this
split tells us that the different performance
measures are similar in the case of high monitors
of class NFS server. If there aren’t high monitors
of class NFS server Tilde splits on high monitor
values for monitor instance Hdisk14 server 11. A
monitor instance is a collection of monitors on a
specific component, so this comes down to the
fact that high usage of disk 14 on server 11 is
causing performance decrease. Further
investigation shows that this holds for almost all
disks of server 11. From the propositional
experiments we concluded that memory
problems or overloading of server 11 was the
main problem of the system. Here we see
something similar. When NFS activity (on server
11) is low, high disk activity on server 11 is the
main bottleneck. It is fairly easy to identify this
situation as “swapping”. The machine has a low
CPU load, low network activity but is only
swapping memory causing high disk activity.
Again, the conclusion is that server 11 needs
more memory or the number of applications on
this server should be decreased.

Performance is low <-
∃ monitor(X, high) ∧
monitorclass_id(X, #requests in queue)

Performance is low <-
∃ monitor(X, high) ∧
monitorclass_id(X, NFS server).

8

Conclusions

The ideas and experiments presented in this
paper demonstrate that the application of Data
Mining techniques to the domain of Adaptive
System Management may offer a lot of insight
into the dynamics of the system at hand. In the
experiments we found several unexpected and
real problems with the system we analyzed. We
have seen that, although propositional techniques
are very useful, first order techniques could
improve the usability of ASM considerably.
Further work should be done in the area of an
efficient implementation of first order
techniques. Also further research should be done
to determine domain specific properties that can
be used to improve efficiency and quality of the
results. A high priority of ASM is the
understandability of the results, especially for
System Managers, who are typically not
Machine Learning experts. We gave a proof of
concept for a large-scale implementation of
ASM. Support effort can be reduced and systems
can be analyzed on a regular basis to prevent
critical systems and applications from crashing
by an implementation of Adaptive System
Management.

Acknowledgements

We wish to thank Stephen Muggleton & James
Cussens of the University of York as well as
Hendrick Blockeel of the University of Leuven
for participating in and contributing to the ASM
experiments performed at the University of
York. Furthermore, we would like to thank our
colleagues at Syllogic, especially Alex Bradley,
Pieter Adriaans, Marc Gathier and Marc-Paul
van der Hulst.

References

1. Adriaans, P.W. and Zantinge, R. Data
mining. Addison-Wesley, 1996.

2. Adriaans, P.W. Adaptive System
Management, in Advances in Applied
Ergonomics, proceedings ICAE’96, Istanbul,
1996.

3. Agrawal, R., Mannila, H., Srikant, R.,
Toivonen, H., Verkamo, A. 1996. Fast
Discovery of Association Rules, in [4].

4. Blockeel, H., De Raedt, L. Top-down
induction of logical decision trees,
submitted to Artificial Intelligence, 1997.

5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth,
P., Uthurusamy, R. Advances in Knowledge
Discovery and Data Mining, AAAI
Press/MIT Press, 1996.

6. Herlaar, L. Diagnosing Performane of
Relational Database Managament Systems,
technical report, Utrecht University, 1995.

7. Ibraheem, S., Kokar, M., Lewis, L.
Capturing a Qualitative Model of Network
Performance and Predictive Behavior,
Journal of Network and System
Management, vol 6, 2 ,1997.

8. Knobbe, A.J., Adriaans, P.W. Analysing
Binary Associations, in Proceedings KDD
’96.

9. Knobbe, A.J., Den Heijer, E., Waldron, R. A
Practical View on Data Mining, in
Proceedings PAKM ‘96.

10. Knobbe, A.J. Data Mining for Adpative
System Management, in proceedings of
PADD ’97

11. /DYUDþ�1���'åHURVNL�6��Inductive Logic
Programming, techniques and applications,
Hellis Horwood, 1994.

12. /DYUDþ�1���'åHURVNL�6��Inductive Logic
Programming, proceedings ILP-97,
Springer, 1997.

13. Muggleton, S. Inverse entailment and
Progol. New Generation Computing,
13:245-286, 1995.

14. Quinlan, J.R. C4.5: Programs for Machine
Learning, Morgan Kaufman, 1992.

15. de Raedt, L. (Ed.) Advances in Inductive
Logic Programming, IOS Press, 1996.

16. Zantinge, R. and Adriaans, P.W. Managing
Client/Server. Addison-Wesley, 1996.

