
Discovering Local Subgroups, with an
Application to Fraud Detection

Abstract. In Subgroup Discovery, one is interested in finding subgroups
that behave differently from the ‘average’ behavior of the entire popu-
lation. In many cases, such an approach works well because the general
population is rather homogeneous, and the subgroup encompasses clear
outliers. In more complex situations however, the investigated popula-
tion is a mixture of various subpopulations, and reporting all of these
as interesting subgroups is undesirable, as the variation in behavior is
explainable. In these situations, one would be interested in finding sub-
groups that are unusual with respect to their neighborhood. In this pa-
per, we present a novel method for discovering such local subgroups. Our
work is motivated by an application in health care fraud detection. In this
domain, one is dealing with various types of caregivers, who sometimes
specialize in specific patient groups (elderly, disabled, etc.), such that
unusual claiming behavior in itself is not cause for suspicion. However,
unusual claims with respect to a reference group of similar patients do
warrant further investigation into the suspect associated caregiver. We
demonstrate experimentally how local subgroups can be used to capture
interesting fraud patterns.

1 Introduction

In this paper, we present a method for discovering local patterns in data. Our
method, called Local Subgroup Discovery (LSD), is inspired by Subgroup Dis-
covery (SD) techniques [4, 8], which to some degree have a local focus, but the
notion of locality plays a more important role here than in standard SD. When
a dataset contains natural variations that are explainable, traditional SD meth-
ods will focus on these. By contrast, when relatively rare events such as fraud
or terrorism are concerned, we aim to find local deviations within these natural
fluctuations. Hence, the LSD method intends to provide interesting and action-
able phenomena in the data, within the natural variations in the data that are
not interesting to report. As we are interested in local deviations, we will use a
neighborhood concept, in terms of a basic distance measure over the data.

In order to define the notion of locality, we work with a reference group that
represents a subpopulation or neighborhood, in the context of which we want to
evaluate subgroups. A local subgroup is a subgroup within this reference group.
Such local subgroups will be judged in terms of their unusual distribution of the
target attribute, compared with that of the reference group (rather than com-
paring with the entire population). Both the reference group and the subgroup
will be defined in terms of distances from a common subgroup center. Standard
quality measures from the SD literature are used to quantify how interesting a
subgroup is with respect to its reference group. Figure 1 shows an example of
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Fig. 1. Two local subgroups that are hard to find with traditional subgroup techniques.
The smaller of the two concentric circles indicates the subgroup, the bigger of the two
circles indicates the reference group.

two local subgroups within an artificial dataset. In SD, we are interested in find-
ing groups that contain relatively many positive examples. The local subgroup
consists of points within the smallest circle, the corresponding reference group
are points within the bigger circle. Both the reference group and the subgroup
are defined in terms of distances from their subgroup center. Both subgroups
contain relatively many red crosses, compared to their local neighborhood.

In this paper we are interested in finding the most interesting subgroups
within reference groups in a dataset. The main contributions of this paper are:
defining the Local Subgroup Discovery task, presenting a new algorithm that
searches for local subgroups efficiently, and showing the usefulness of the local
subgroup idea in a real-life fraud detection application.

1.1 Motivation: Health Insurance Fraud Detection

The motivation for this problem comes from the field of fraud detection in health
insurance data, where we are interested in identifying suspicious claim behavior



of caregivers. The problem is essentially an unsupervised one, since we are not
presented with any examples of known fraud cases. The goal is to identify groups
of claims that are interesting to investigate by fraud investigators. We do this by
comparing the claim distribution of one caregiver (typically, a high-cost claimer)
with that of the remaining caregivers. The health insurance data we consider in
our experiments contains information about patients and caregivers. A single
record in this dataset summarizes the care (treatment, medication, costs, etc.)
an individual has received over a selected period. Although the data is described
in terms of patients, we are actually more concerned with an analysis of this data
on the level of caregivers. After all, consistent ‘inefficient’ claim behavior (in the
extreme case: fraud) committed by specific caregivers has a far more substantial
commercial impact than such behavior committed by specific patients.

We will explain the setting with the help of Figure 1. Suppose that each
point represents a patient. The dataset clearly consists of three clusters, which
we can interpret as groups of patients with the same type of disease. Within
these clusters the differences between patients are caused by treatment costs,
variations in medication types, and so on. The approach we take in this paper is
to single out an individual caregiver, and define a temporary binary column that
identifies the patients of this caregiver. This column will then serve as the target
in a Subgroup Discovery run, in order to find patterns in the claim behavior that
distinguishes this caregiver from the others. In Figure 1, patients of the marked
caregiver are represented by red crosses. Patients of other caregivers appear as
blue plusses. The two subgroups (smaller circles) indicate a difference in claim
behavior within a reference group of patients having the same disease type (larger
circles). This is because in the subgroup, the proportion of red plusses is much
higher than the proportion of plusses in the reference group. If substantial local
subgroups can be found for an individual caregiver, this is a strong indication of
inefficient or fraudulent practice. By repeating this process, each time focusing
on a different caregiver, we can produce a list of all suspicious caregivers, along
with the necessary details about the unusual behavior.

2 Related Work

Describing distributional differences between the target and non-target set is
usually referred to as Subgroup Discovery [8], but also as Contrast Set Mining
[1], and Emerging Pattern Mining [2]. These methods find subgroups that are
interesting compared to the whole dataset, whereas the method we propose finds
locally interesting subgroups. Also, in Subgroup Discovery the subgroups are
usually described by conditions on the non-target attributes whereas in our
application we use a distance measure to define subgroups. This is similar to
epidemiology where a spatial scan statistic [6] is often used to identify regions
where a certain type of disease (the target attribute) is more frequently present
than in the rest of the country. Here a likelihood ratio statistic is often used to
identify interesting regions. In our approach we also look for interesting regions
in our data. Unlike with the spatial scan, our approach allows for any quality



measure (instead of the likelihood ratio statistic) and finds reference groups
together with subgroups. Calculating the quality measure on a subset of the data
has been done before [7]. The subset of the data is obtained by using a distance
measure. Luong et al. fix a nearest neighbor parameter k, calculate a quality
measure on a part of the data based on this k, and then describe interesting
regions in the dataset for which this quality measure is high. The difference with
our approach is that we are interested in searching for interesting subgroups,
automatically finding relevant values of the nearest neighbor parameter k.

To the best of our knowledge, this is the first approach to unsupervised fraud
detection by using Subgroup Discovery to compare between entities (here these
entities are caregivers, but they could be shops, cashiers, etc.). Other approaches
to fraud detection are supervised methods (where fraud is labeled beforehand),
and outlier detection methods. Since we do not have a labeled fraud set, and we
are interested in differences on the aggregated level of claims of caregivers rather
than finding single outliers, these methods are beyond the scope of the paper.

3 Preliminaries

Throughout this paper we assume a dataset D with N elements (examples) that
are (h + 1)-dimensional vectors of the form x = {a1, .., ah, t}. Hence, we can
view our dataset as an N × (h + 1) matrix, where each data point is stored as
a row xi ∈ D. We call ai = {ai1, .., aih} the attributes of xi, and ti its target. We
assume that each target is binary, and each vector of attributes comes from an
undefined space A on which we have a distance measure δ : A×A → R.

A subgroup can be any subset of the dataset S ⊆ D. A quality measure
q : 2D → R is a function assigning a numeric value to any subgroup. Quality
measures describe how interesting subgroups are, and usually take into account
the size of a subgroup (larger is better) as well as its difference in target distri-
bution (higher proportion of the target is better).

To deal with locality we propose a distance-based approach to find subgroups
and reference groups, based on prototypes. A prototype can be any point in
attribute space x ∈ A. The distance-based subgroup Sσ based on x for parameter
σ ∈ N, consists of the σ nearest (according to δ) neighbors of x in D. The
reference group Rρ based on the same x for parameter ρ ∈ N s.t. ρ ≥ σ, consists
of the ρ nearest neighbors of x in D. The idea is that Rρ forms a region in input
space where the target distribution is different from that distribution over the
whole dataset, and we strive to find subgroups Sσ ⊆ Rρ in which the target
distribution is different from the distribution in the reference group.

We write S(x, σ, ρ) for the subgroup Sσ in a reference group Rρ, which we
call a reference-based subgroup. The prototype can be seen as the center of this
subgroup, and as the center of the reference group encompassing the subgroup.
A quality measure calculated for a reference-based subgroup considers only ex-
amples inside the reference group: the quality of the subgroup is calculated on a
contingency table of the data, as if the reference group were the entire dataset.



ranking(x) = { +, +, −, +, −, +, +, +, −, −, −, +, −, −, . . . }
↑ ↑
σ ρ

Fig. 2. Ranking of the target vector for a prototype x. The target vector is sorted
according to the distances to x. All examples from the leftmost observation (the closest
point to x) to σ are in the subgroup. All examples from the leftmost observation to ρ
are in the reference group.

Given a prototype x, a distance measure δ, and the target vector t, we can
obtain a ranking of the target variable (see Figure 2). This ranking is a sorted
list of targets, where the leftmost point is closest to x and the rightmost point
is the point furthest from x. To find the optimal reference and subgroup for
a given x, we have to set σ and ρ in such a way that the quality measure
is maximized. For example, let us calculate the Weighted Relative Accuracy
(WRAcc) quality measure for the subgroup and reference group in Figure 2, for
the parameters σ = 8 and ρ = 14. The WRAcc of a subgroup S with respect
to target t is defined as P (St) − P (S)P (t), where P (St) is the probability of
the target and subgroup occurring together, P (S) is the probability of a record
being in the subgroup, and P (t) is the probability of the target being true. These
probabilities are all calculated given that a point belongs to the reference group.
In this example the WRAcc is thus given by: 6/14 − 8/14 · 7/14 = 1/7 ≈ 0.143. If
we would set ρ to 11 instead of 14 this would lead to a somewhat higher quality:
6/11− 8/11 · 6/11 = 18/121 ≈ 0.148.

4 Finding Local Subgroups

In this section we explain how the optimal subgroups and their reference groups
are found. First we explain how we search for the most interesting subgroups
with the highest quality. We also explore our approach to two problems encoun-
tered when searching for local subgroups. The first problem is how to compare
qualities found on different reference groups, with different reference group sizes
and different numbers of positives. The second problem is concerned with the
potential redundancy in the collection of reported subgroups.

4.1 Searching for the Optimal Values

In LSD, subgroups are described by optimal combinations of the prototype x and
the parameters σ and ρ. Assume we are considering a candidate prototype x. We
then loop over possible values of ρ, and for each value, try all possible values for
σ and calculate the quality. Per value of ρ, the highest quality obtained in this
way is called the optimal quality, and the value σ(x, ρ) at which this maximum
is obtained is called the optimal value for σ, given x and ρ.



If we were to search for optimal values of the quality measures in this way,
we would find that for the ranking in Figure 2, the optimal value for WRAcc
would be obtained at ρ = 3, and σ = 2, with a WRAcc value of 2/9 ≈ 0.222.
Unfortunately, this subgroup is not that interesting because it is quite small.
Nor is it very significant; in any dataset and for any prototype, we can typically
construct such a tiny subgroup and a reference group that perfectly separates
positive from negative examples. This behavior of favoring very small reference
groups in which we can perfectly separate positive from negative cases does
not only occur for the WRAcc measure; any quality measure will suffer from
this problem. Hence, guiding the search solely by high quality will not lead to
interesting results. The size of the reference group should also be big enough to
ensure that a subgroup with a high quality is really interesting. Hence, we need
to deal with the significance of the found quality.

4.2 Significance and Interestingness

To compute the significance of a candidate x, ρ, and associated σ(x, ρ), we use
a swap randomization technique, creating a baseline distribution of false discov-
eries (DFD). This method [3] was originally designed for SD where subgroups
are defined by attribute-value descriptions. We modify the method for use with
distance-based subgroups, as follows. First, the target variable in the reference
group is permuted, while keeping the rest of the dataset intact. Within Figure 2
this corresponds to permuting all plusses and minusses up to ρ. Since we leave
the attribute space intact, all distances between examples remain the same. Next
we search for the optimal quality in this permuted reference group. The optimal
quality found can be considered a false discovery, because it is a discovery made
on data in which the attribute space is left intact, but its connections with the
targets are randomized. We can repeat this procedure to obtain more false dis-
coveries. Together, these qualities constitute a sample of the DFD. The DFD for
a quality measure thus differs for each combination of reference group size, and
the number of times the target is positive in the reference group. Using this DFD
we can assign p-values to subgroups having a certain quality. As [3] describes, a
normal distribution can be used to estimate p-values, corresponding to the null
hypothesis that a subgroup with the given quality is a false discovery.

The p-value obtained gives us a fair measure to compare qualities found for
different reference groups. A low p-value indicates a low probability of finding
the quality by chance. Within our approach, we compare subgroups found on
different reference groups by comparing their p-value. In Section 5 we show how
to search for subgroups with the lowest p-values efficiently.

4.3 Choosing Prototypes and Removing Redundancy

In the previous section, we explained how to find optimal values for σ and ρ,
for a given prototype x. Since we will find optimal values for each prototype,
that is each point in the dataset, this will lead to discovering many (redundant)



subgroups. In this section, we describe how to find optimal (non-redundant) val-
ues for x, with the goal of presenting a concise list of subgroups to the user.
To achieve this, we use a top-k approach: only the k most interesting subgroups
are mined. Additionally we will use two techniques to remove redundancy from
this top-k list. The first technique, based on the quality neighborhood of exam-
ples, will prevent redundant subgroups to enter the top-k. The second technique
postprocesses the top-k to select a small group (generally 3 to 6 subgroups) as
the least redundant subgroups from the top-k list.

Consider only Local Maxima Points that are close to each other in the
dataset will generally have the same neighbors. When these examples are con-
sidered as prototypes, they will have similar optimal qualities, since their optimal
subgroups and reference groups will strongly overlap. Given a subgroup size σ
and a reference size ρ, we can compute the quality of the subgroup S(x, σ, ρ)
for each prototype x. In this way we can determine a quality landscape for our
data. Within this quality landscape, we then look for local optima. To this end,
we define the quality neighborhood qneighborhood(x, σ, ρ), of a point x. We do
this by considering the set Xx ⊆ D of the σ nearest neighbors of x. For each
neighbor we determine the quality of its reference-based subgroup. These values
form the quality neighborhood: qneighborhood(x, σ, ρ) = {q (S(x′, σ, ρ))|x′ ∈ Xx},
where q() is the quality measure on the subgroup. A prototype x is a local max-
imum if its quality is maximal among its quality neighborhood: q (S(x, σ, ρ) ≥
max qneighborhood(x, σ, ρ). Prototypes that are no local maximum are considered
not interesting, and will therefore not be reported.

Post-processing the Top-k There still may be some largely overlapping sub-
groups and reference groups of prototypes in each others neighborhood that have
only a slightly different value for σ and ρ. Hence we employ redundancy removal
techniques such as joint entropy and the exclusive coverage heuristic [5]. We
select the combination of subgroups with the highest value for the heuristic.

5 Reduction of DFD Estimations

Distance-based methods can be computationally intensive. We use different prun-
ing strategies to reduce the number of times the DFD has to be computed.

From all possible reference group sizes ρ for a prototype, we would like to
report the optimal quality with the lowest p-value. To obtain p-values, we have
to estimate the DFD. The estimation of all DFDs is computationally intensive
(it requires O(sρ) calculations, where s is the sample size). In total there are n
possible values of ρ so (if the DFD is not stored) it has to be recomputed n times
for each prototype, where n is the number of examples. Computing the DFD is
unnecessary for a subgroup that will not enter the top-k anyway. We present a
user-set parameter and two pruning techniques to reduce the number of DFD
calculations, and show the pseudocode.



Algorithm 1: Lowest p-Value for Prototype(db, x, qoptimal , σoptimal)

input : database db, prototype x, qoptimal , σoptimal

output : pvalbest, qbest, σbest, ρbest
1 qthreshold = −∞;
2 pvalbest =∞;
3 foreach ρ in decreasing order do
4 if isLocalMaximum(x, σoptimal , qoptimal(ρ)) ∧ (qoptimal(ρ) ≥ qthreshold) then
5 compute DFDx,ρ;
6 p-value ← DFDx,ρ(qoptimal(ρ));
7 if p-value ≤ pvalbest then
8 pvalbest ←p-value ;
9 ρbest ← ρ;

10 qbest ← qoptimal(ρ);
11 σbest ← σoptimal(ρ);
12 qthreshold ← qoptimal(ρ);

13 else
14 qthreshold ← Φ−1

DFD(1− pvalbest);

Maximum value for ρ To decrease computation time, and ensure locality of
the patterns at the same time, the user can set a maximum value for the
reference group size.

Consider only local maxima. We can check whether a point is a local maxi-
mum before the DFD is estimated. If the point is not a local maximum, the
DFD does not have to be estimated since there is a largely similar neighbor-
ing subgroup with a better quality.

Pruning the ρ-search space based on sample size. To search efficiently we
prune away parts of the search space where we know that the p-value can not
be lower than the one already found. If for two different reference group sizes
the same quality is obtained, the quality calculated on the largest reference
group will be the most significant finding, and thus have the lowest p-value.

We explain how this pruning strategy works step by step, by using the pseu-
docode in algorithm 1. For each prototype we keep in memory a threshold on
the quality, denoted by qthreshold. We also keep in memory the optimal p-value
that is found so far for this prototype, pvalbest. We are interested in finding
the lowest p-value for this prototype. We start by calculating the p-value for a
prototype for the maximal value for ρ in the first iteration.

Next, we observe the qualities found for the same prototype, for smaller
values of ρ, in decreasing order. If the optimal quality found for such a smaller
reference group, qoptimal(ρ), is lower than the threshold, we skip the estimation
of the DFD and the calculation of the p-value, because we know the p-value
will be lower. For smaller values of ρ that have a higher optimal quality, we
compute the DFD. We also obtain the cumulative distribution function of the
DFD, ΦDFD, and the inverse cumulative distribution function, Φ−1DFD. From the



DFD we obtain the p-value of the quality found. If the newly obtained p-value
is lower than pvalbest, this subgroup is the best subgroup found so far. For
this prototype x, the corresponding values for σoptimal and ρoptimal as well as its
quality qoptimal , and the p-value are stored. The quality threshold is updated and
is set to the quality corresponding to the new optimum. If the newly obtained p-
value is higher than the one previously found on a bigger sample, these variables
are not updated. The quality threshold is updated by inserting 1− pvalbest into
the inverse cumulative distribution function of the DFD.

Pruning the ρ search space using a top-k approach. A subgroup only
enters the top-k if its p-value is lower than the current maximum p-value in
the top-k. The key idea (again) is to update the threshold each time the DFD
is estimated. The only difference with pruning-per-prototype is that we can
update the quality threshold by inserting the current maximum p-value of the
top-k list into Φ−1DFD instead of inserting the minimum p-value found so far for
this prototype, to obtain the new threshold.

6 Experiments and Results

Artificial Data We start by testing our method on the artificially generated
data that already featured in the introduction (Figure 1). This two-dimensional
data consists of 252 examples, with a roughly equal spread between positive and
negative examples. 20 subgroups were obtained by considering each individual
example in the data as a prototype, using Euclidean distance and WRAcc as
quality measure. From these 20 subgroups, we select 3 non-redundant subgroups
by using the exclusive coverage measure [5]. We compare the results with those
of a ‘traditional’ SD algorithm which features in the generic SD tool Cortana1.
The traditional SD algorithm describes subgroups in terms of attribute-value
descriptions.

The first subgroup discovered by LSD is also found by Cortana. In Figure 1
this corresponds to the big cluster at the top. The second subgroup, found in the
lower left cluster in Figure 1, is not found using traditional SD methods, because
there are many subgroups from the big cluster with the same size that also have
a high proportion of positive examples. The third subgroup is situated in the
lower right corner. This subgroup is not detected with Cortana. This is because
the density of the target variable in the subgroup is the same as the density of
the target in the entire dataset, so the density of the target differs only locally.

In order to gauge the efficiency of our method and the different pruning
options, we generated datasets of various sizes, while keeping the original distri-
bution intact (all artificial datasets will be made available online). Figure 3 shows
the influence of the different pruning strategies on the computation time. In gen-
eral, a combination of pruning and local maxima offers the best performance,
over an order of magnitude faster than either method alone. For comparison,
the brute force approach at n = 200 takes 4,548 seconds, over two orders of
magnitude slower (157.9 times) than the fastest result.

1 datamining.liacs.nl/cortana.html
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Fig. 3. The increase of computation time for different numbers of prototypes for the
artificial dataset, using different pruning strategies. Because of the very long run time,
the brute force approach is only performed up to 200 prototypes. The results are
averaged over 10 runs.

We also observed the effect the local maxima pruning strategy has on the
Subgroup Discovery results. If the local maxima strategy is not used, this will
lead to the presentation of many redundant subgroups from the big cluster in
the top. Each point in this cluster is then presented as an interesting prototype.

Fraud Detection Our health care application concerns fraud amongst dentists.
Each patient is represented by a binary vector of treatments received during a
year. The dataset contains 980,350 patients and 542 treatment codes. We use
Hamming distance, and quality measure WRAcc. Note that because of the dis-
crete nature of the data, there are many duplicate examples (many patients with
identical treatments). Additionally, the distance of a point to different neighbors
may be identical, which limits the number of values of σ and ρ that need to be
tested. We restrict ρ to a maximum of 10% of the data.

We select a dentist with a markedly high claiming profile, and define the
target accordingly. For 5,567 patients (0.57% of the population) this target is
true.

Table 1 shows the local subgroups found by our proposed method, LSD.
These results were obtained after mining the top 50 subgroups first, and then
selecting for diversity using the exclusive coverage heuristic. The interpretation
for subgroup S1 is that for patients receiving a regular consult (C11, C12) and
dental cleaning (M50), the dentist often charges extra costs for a plaque score
(M31) and an orthopantomogram x-ray picture (X21). Also an anamnese (in-



Table 1. Prototypes and their support in the subgroup, and their support in the refer-
ence group excluding the subgroup. The codes indicate treatments that were charged
for a patient, the supports indicate the fraction of patients receiving those treatments
respectively. The columns # t and # ¬t are the counts within those groups of positive
and negative examples.

Subgroup Prototype and Supports # t # ¬t WRAcc p-value

S1 prototype {C11,C12,C22,M31,M50,X21}
S1 {1.00,0.97,0.17,0.49,0.93,0.60} 54 78
R1 \ S1 {1.00,0.94,0.03,0.12,0.95,0.13} 667 10,734 0.0042 < 0.0001

S2 prototype {C11,M31}
S2 {1.00,1.00} 30 2,189
R2 \ S2 {1.00,0.11} 94 35,566 0.0006 < 0.0001

S3 prototype {C13,X10,X21}
S3 {0.38,0.71,0.18} 85 12,177
R3 \ S3 {0.03,0.11,0.01} 55 30,417 0.0010 < 0.0001

vestigating the patients history, C22) is charged much more often for this group
of patients. In subgroup S2, patients receiving a regular consult and a plaque
score are occurring relatively more frequently than patients having only a reg-
ular consult without the plaque score (which are in the reference group outside
the subgroup). In subgroup S3, codes X10 and X21 are x-ray pictures, and C13
means an incidental consult. Note that treatment C11 is not in the prototype,
but still has a support of 77% in the subgroup and a support of 98% in the
reference group outside the subgroup. We can conclude that this dentist charges
relatively many x-ray pictures of type X10 with a regular or incidental consult.
The qualities for the subgroups S1, S2 and S3 are 32, 15 and 14 standard devi-
ations from the mean of the DFD, respectively, which results in p-values near
zero.

As a baseline, we compare the results using traditional SD in Cortana, using
WRAcc, a search depth of 3 and beam search with beam width 100. We obtain
the top 50 subgroups first, and then select for diversity using the exclusive cov-
erage heuristic [5]. There are two subgroups that cover the other subgroups in
the top 50: X21 = 1, and C11 =1 ∧ V21 = 1. Code X21 represents an orthopan-
tomogram (x-ray photo), code C11 represents a consult, and code V21 is used
for polishing a sealing. The subgroup sizes are 100,643 and 369,748, with 2,438
and 3,228 positive examples, respectively, which leads to a WRAcc of 0.0020,
and 0.0014 respectively. The main difference between LSD and traditional SD is
that the local approach presents locally deviating patient groups and provides
information about the patient group’s neighborhood. The resulting subgroups
are easier to evaluate by domain experts, and detailed enough to be investi-
gated further by fraud investigators. The traditional SD approach returns global
patterns that are not interesting or specific enough to trigger an action.

With our LSD algorithm, we were able to mine interesting subgroups in
5.5 hours in this dataset containing almost a million examples and over 500



attributes. The Cortana traditional SD algorithm took 24 minutes. Both were
run on the same machine with 32 GB of main memory, and 8 cores. Although
the runtime of the LSD approach depends on the dataset, and the parameter for
the maximum value of ρ, this shows that the LSD approach is scalable to fairly
big datasets.

We applied our method to compare pharmacies as well as different type of
dentists, also using other distance measures like standardized Euclidean distance
(in this case, the emphasis is on costs per treatment rather than combinations
of treatments only). The results were presented to the fraud investigation de-
partment of an insurance company, and were considered very interesting for
further investigation. The absence of ‘cheap’ patients in the reference group as
well as the presence of relatively many similar, but more expensive, patients in
the subgroup is very useful for indicating inefficient claim behavior.

7 Conclusion and Further Research

In this paper, we present a new approach to find local subgroups in a database.
These local subgroups are very relevant within a fraud detection application
because systematically committed fraud leads to local distribution changes. In-
spired by the fraud detection application, there are numerous directions to inves-
tigate further. One promising direction will be cost-based Subgroup Discovery
to find even more interesting subgroups. Instead of the distance-based approach,
we can also investigate a more traditional, descriptive approach to find local
subgroups.
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