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This paper is concerned with the modelling of whole-body metabolism. The
analysis is based on data collected from a range of experiments involving mice
in metabolic cages, whose food consumption, activity and respiration has been
monitored around the clock. Our aim is to model the dependencies between
these different variables by means of (differential) equations, as is customary
in systems biology. However, compared to the common setting of modelling on
the cellular level, where changes in concentrations are mostly instantaneous, in
whole-body metabolism we need to take into account the relatively slow process
of food digestion. As a result, the effects of eating will only be visible in the
activity and body-heat variables with a certain delay. To further complicate the
modelling, the digestive delay depends on the different rates of metabolism of
carbohydrates and fat. We accommodate for these (varying) delays in digestion,
by adding different time-shifted versions of the primary variables to the data, and
applying different levels of smoothing. These newly constructed variables can be
interpreted as representations of available blood sugars, with different hypothetic
rates of digestions. The Lagramge tool [2,3,4] was used to induce ordinary and
differential equations that model the enriched data. Lagramge is an equation
discovery tool that finds equations of arbitrary (configurable) complexity, and
subsequently performs the parameter fitting to the data.

1 The metabolic cage

Our data was gathered at the LUMC in a project concerning the Metabolic
Syndrome. In that study, 16 genetically identical mice were divided into two
equal-sized groups, one was put on a low (LFD), the other on a high fat diet
(HFD). During a 3-day period, various variables were recorded every 7.5 minutes
while the mice were in a metabolic cage. Such a cage creates a closed environment
in which the amount of oxygen and carbon dioxide can be controlled.

For the experiments below, the following variables are used: V O2 (oxygen
consumption), V CO2 (carbon dioxide production), RER (respiratory exchange
ratio), HEAT (aka. energy expenditure), F (food consumed) and X (total X-
activity). The activity was measured using a number of infrared beams in the
cage. RER and HEAT are calculated as follows:

RER = V CO2/V O2

HEAT = 3.185 · V O2 + 1.232 · V CO2



Though just a simple ratio, RER is very useful, as it gives direct insight into
the energy source an organism digested to fuel its activity. Digestion of pure
carbohydrates would result in a RER of 1.00, pure fat in 0.707, and a 50/50 diet
would result in a RER of 0.85 [1]. This allows to differentiate between the two
diet groups.

2 Equation Discovery with Lagramge

The equation discovery tool Lagramge was used to generate equations that might
capture the essential variables involved during the various stages of metabolism,
along with their interplay. Lagramge is capable of discovering both ordinary
(OE) and differential (DE) equations. To restrict the search space, the structure
of equations can be defined through a context free grammar, which also allows
domain specific knowledge to be included, in the form of formulas. Such formu-
las, then need no longer be discovered, but are available to be included into new
candidate equations right from the start. Three different grammars were tested,
a Linear, Universal and Metabolic Cage (MC ) grammar. Because of space lim-
itations, we only present results for the MC grammar (shown below), which is
somewhat inspired by the Universal grammar [4], but includes the information
of the RER and HEAT equations above.

E → E + F | E − F | E · F | E / F | const
F → RER | HEAT | V
RER → V / V
HEAT → const · V + const · V

3 Experiments

Three variables were chosen as targets for separate experiments: RER, HEAT
and X. Both OEs and DEs were sought using an exhaustive search setting of
depth 4, as this turned out to be a good trade-off between formula complexity
and computation time. Note that depth refers to the number of refinements by
means of one of the rules in the grammar.

Data was preprocessed in two ways. First, for all variables but X, the data
was modestly smoothed using the standard Gaussian kernel, G (µ, σ), with µ = 0,
and σ = 1. As time points are relatively far apart, some smoothing was deemed
necessary to compensate for boundary effects. X was left out of this procedure as,
compared to eg. food digestion, this is the most abrupt process, and any spread
in dependencies between X and other variables is already achieved by their
smoothing. Furthermore, for the F variable, data was additionally smoothed
using G (0, 0.5) and G (0, 1.5) to account for any gradual effects the consumption
of food may have.

More than any of the other variables, the energetic effects of food consump-
tion depend on time. As a second step, we therefore added four versions of each
F variable, to accommodate potential different rates of metabolism. The time
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delays were 15, 30, 60 and 90 minutes, which resulted in 15 different F variables
in total, five for each kernel version. These were all simultaneously present in
the data file, the rationale being that Lagramge might include the important
variables from concurrent time scales all in a single equation. Here, the concur-
rent time scales are related to the various rates and stages of carbohydrate and
fat metabolism. Figure 1 shows a smoothing of the F variable for a HFD mouse
(first 12 hours are depicted only).

3.1 Results

Table 1 shows some of the best equations found using the MC grammar in
an exhaustive search of depth 4. Here best is defined as smallest error. These
errors, and the correlation between the measured values and the predicted ones,
are shown in table 2, which also shows the number of trees Lagramge evaluated
to reach the results. Lagramge has two heuristic functions which it can use to
minimize the error in its search for the best equations. All results presented
here use the SSE (sum of squared error) function. Note that the errors for X
seem very large compared to those of RER and HEAT, but the input domain
of RER and HEAT is roughly between 0 and 1, while that of X ranges from 0
to 1,000. For X this yields an SSE range of 0 - 1,000,000, so the largest error
73,088 is about 7%. For OEs and DEs the target is denoted like Td and T ′

d

respectively, where d indicates the diet group. For the food variable (F ), the



σ subscript denotes the sigma used for the smoothing kernel and M denotes
the shift in minutes. A superficial scan of these results shows that a variety of
equation syntaxes are used, with linear equations dominating the RER results.
Furthermore, most equations involve at least one delayed F variable, with only
a single equation being based on the (slightly smoothed) direct F variable. This
clearly illustrates the effect that absorbed nutrients have on the mechanisms by
which fuel selection is regulated. Also, table 1 shows that the activity X is a
major determinant of energy expenditure, as would be expected.

Table 1. Best equations found for each setting and diet type.

Target Equation

RERLFD 0.826 + Fσ1.5,M30 + 1.646 · Fσ1.5,M15 − 2.094 · Fσ1.5,M60

RERHFD 0.791 + Fσ1.5,M30 + 0.762 · Fσ1.5,M15 − 0.318 · Fσ1.5,M60

RER′LFD −0.004 · Fσ1.5,M90 + 0.006 · Fσ0.5,M0 + 0.182 · Fσ0.5,M90

RER′HFD −0.008 · Fσ1.5,M30 + 0.011 · Fσ0.5,M15 + 0.627 · Fσ0.5,M30

HEATLFD 0.441 + 1.219 · 10−4 · RER − 0.406 · X
HEATHFD 0.376 + Fσ1.5,M30 + 2.146 · 10−4 · Fσ1.5,M60 + 0.348 · X
HEAT ′LFD (−0.024 + Fσ0.5,M15) · (0.015 · Fσ0.5,M15 − 6.907 · Fσ0.5,M90)
HEAT ′HFD (0.873 − RER) · (−0.007 · Fσ0.5,M30 + 77.452 · Fσ1.0,M30)

XLFD (−0.221 + V O2) · (17217.2 · Fσ0.5,M0 − 16822.8 · V O2)
XHFD (−0.206 + V O2) · (6075.65 · HEAT − 784.577 · V O2)
X ′LFD −0.011 − Fσ0.5,M15 + Fσ0.5,M0/HEAT
X ′HFD −0.706 · HEAT + 1.400 · Fσ0.5,M90 − 9.481 · V CO2

Table 2. Error and correlation of best equations and number of trees evaluated.

Target Error Correlation Trees

RERLFD 3.833 · 10−3 0.20
117369

RERHFD 1.600 · 10−3 0.52
RER′LFD 12.156 · 10−3 -0.06

139369
RER′HFD 4.712 · 10−3 -0.06

HEATLFD 2.441 · 10−3 -0.57
117369

HEATHFD 2.589 · 10−3 0.78
HEAT ′LFD 2.683 · 10−3 0.05

139195
HEAT ′HFD 5.693 · 10−3 -0.19

XLFD 44657.4 -0.62
163572

XHFD 24848.0 0.84
X ′LFD 72839.1 0.26

190641
X ′HFD 73088.9 -0.24



For all three targets, figure 2 shows the number of occurrences of each version
of the Fσ0.5 variable in the top 1,000 DEs for each diet group. Here we can clearly
see a different pattern for the two groups. Compared to the HFL group there are
many more occurrences of the non-shifted variable Fσ0.5,M0 in the LFD group
for HEAT ′ and X ′, while Fσ0.5,M15 is much more frequent for the HFD group
for RER′ and HEAT ′. This indicates that the energy from high-carb nutrition
is available in the blood stream quicker than for the high-fat diet.

Finally, for target X, figure 3 (left) shows an example of one of the found
equations (HFD group) compared to the original data, as a function of time. The
right figure shows the fit between the actual measurement and its model, for the
same equation. The linear correlation between these two functions is r = 0.84,
table2 shows the correlation of the other equations.
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Fig. 2. Histograms of three target variables, each for two diets.

4 Conclusion

The experiments reported in this paper demonstrate that Lagramge can be an
important tool for modelling in systems biology. It allows the induction of rel-
atively elaborate algebraic and differential equations, including the fitting of
parameters, without requiring excessive computation times. Especially where
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Fig. 3. Signal fit and scatter

modelling of whole-body metabolism is concerned, the use of various time-
shifted variants of the primary data is essential, in order to account for different
metabolic processes that have an inherent delay, the details of which may not di-
rectly be measurable in the system. The experiments show that the difference in
metabolic rates of the two diets considered can be recognized from the difference
in time shifts that occur in the respective equations.
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3. Džeroski & Todorovski, Discovering Dynamics: From Inductive Logic Program-

ming to Machine Discovery, JIIS 1995.
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