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Abstract In this paper, we provide some preliminary result for the ILP 
Challenge 2005 concerning a genetic database of information related to the 
function of a range of yeast genes. The yeast database consists of multiple 
tables, and is hence a multi-relational problem. We demonstrate how the 
MRDM packages Safarii (mining) and ProSafarii (pre-processing) can be used 
to mine this data. We provide biological justification for the results obtained. 

1 Introduction 

This paper considers the genetic database of genes that make up the yeast genome 
Saccharomyces cerevisiae, which is provided as a challenge for data miners in the 
context of the ILP 2005 conference [2]. This database contains descriptions of 
individual genes, and lots of background information such as the homology between 
pairs of yeast genes, secondary structure information and homology with different 
genes that appear in a database known as SwissProt. The database thus describes 
structured information, which makes the analysis multi-relational. The data is spread 
over a total of 11 tables. 

In this paper we describe a Data Mining exercise based on the Multi-Relational 
Data Mining framework implemented in the Safarii package, developed by the first 
two authors. Safarii provides a number of algorithms that work on multi-relational 
data stored in a relational database. The mining package is supported by a pre-
processing tool known as ProSafarii. In the next section, we give an overview of how 
our MRDM framework and the two software packages work. Section 3 gives an 
overview of the structure of the yeast database. In Section 4 we provide a number of 
Data Mining settings that were tried, as well as the required pre-processing involved. 
Section 5 describes the results for the different settings. We give some biological 
interpretation of the results as well. 

2 Multi-Relational Data Mining & Safarii 

Safarii implements a style of MRDM introduced in [3, 4]. It assumes all data is 
stored in a relational database containing multiple tables. One of the tables (the target 
table) represents the primary entity that is being analysed. Each individual is 
represented by a single record in the target table. Structured data related to the 
individual can be looked up by following the associations between tables (a form of 



foreign key relations). Class values pertaining to individuals also appear in the target 
table. 

Unlike most ILP systems, Safarii does not use Prolog to describe discovered 
knowledge (nor the data itself for that matter). Rather, it uses a graphical language 
known as selection graphs [3], which captures both the structural properties of 
specific individuals, as well as attribute conditions on specific parts of the structure. 
Selection graphs can be easily translated to first-order logic or SQL, and thus form a 
bridge between MRDM and relational databases. In essence, selection graphs describe 
subgroups of the database, and can thus be seen as building blocks for more 
complicated models of the data, such as decision trees. 

Safarii relies to a large extent on the computational power of the RDBMS that 
stores the data. Rather than loading all the data in main memory, it employs a small 
set of data mining primitives (predefined templates of SQL queries) for access to the 
data. Each primitive produces the required statistics for a small set of similar multi-
relational hypotheses. Based on these statistics, the actual mining algorithm 
determines the quality of specific hypotheses, and decides which ones to consider for 
further refinement. Hence the mining component of the system only deals with 
relatively compact summaries of the data, and important issues of scalability and 
query optimisation are left to the RDBMS.  

Most relational databases have a well defined data model. Safarii uses this data 
model as declarative bias. The data model is provided in the form of an XML dialect 
known as MRML (Multi-Relational Modelling Language). An MRML file contains in 
textual form the graphical structure of the database, as well as names and types of the 
different attributes available. Hence the file is the textual equivalent of UML Class 
Diagrams which can be used to model relational databases [3]. An example of the 
graphical structure of the ILP 2005 Challenge database can be seen in Figure 1. 

Safarii supports two classes of mining algorithm. The first, Rule Discovery, 
produces a set of independent rules with a fixed target concept, based on one of the 
target attributes in the target table. Rules can be discovered with a range of rule 
measures and search strategies. The second algorithm implements a Separate & 
Conquer strategy for building multi-relational decision lists. The decision list can be 
used as a classifier (unlike the rule set produced by Rule Discovery). The Separate & 
Conquer algorithm actually encapsulates the Rule Discovery algorithm. Each decision 
in the decision list is based on the best rule discovered by Rule Discovery, given the 
current context of individuals. 

The Safarii mining environment comes with a pre-processing companion called 
ProSafarii. This tool performs a limited form of reasoning about the data model and 
the database, and subsequently suggests a number of tentative transformations. It 
contains 9 classes of transformation that are potentially useful in the context of 
MRDM and Safarii specifically, ranging from denormalisation to aggregation and 
multi-relational discretisation. After validation by the user, ProSafarii performs the 
actual transformations and writes a corresponding MRML file. The result can hence 
be mined directly by Safarii. 



3 ILP 2005 Challenge Data 

The genetic data that is the subject of the Challenge is provided through [2]. The 
original data consists of a large collection of Prolog files with facts for some 15 
predicates. A fair amount of work was required to parse this data, and load it into a 
relational database. Before actually mining the data some more pre-processing of the 
data was required (as is explained in the next section). The data model of the initial 
database is shown in Figure 1. This database relates to the original Prolog modelling 
as follows. Predicate names appear in Courier, and table names in bold. 

The primary entity of the relational database is gene. This table contains the 6000 
odd genes that make up the yeast genome Saccharomyces cerevisiae. The gene entity 
does not appear directly in the data, but gene identifiers can be extracted from 
yeast-labelled and -unknown, or alpha_dist, beta_dist or 
coil_dist. The latter three predicates also have been normalised onto gene. The 
many-to-many relationship between genes and functional classes is implemented by 
the hasfunction table, which connects gene to funcat, a list of functional categories 
with descriptions. The internal hierarchical structure of category identifiers (e.g. 
01.02.01 nitrogen and sulfur utilization falls under 01.02 nitrogen and sulfur 
metabolism, which again falls under 01 METABOLISM) has been made more 
accessible by adding attributes in funcat for each of the five levels. 

The homology table describes the homology between pairs of yeast genes in terms 
of an e-value. Only a fraction of the more than 18 million possible pairs occur. 
Similar homology data (in the eval table) is available between yeast genes and genes 
occurring in a database called SwissProt. This homology data is also incomplete. 
Again, identifiers for the SwissProt genes can be extracted from multiple predicates, 
for example classification, mol_wt or sq_len. This information is gathered 
in the swissprot table.  

The class table (derived from parent) serves as a look-up for the classification 
of the organism and its position in a taxonomy of species. Different classes of species 
can be accesses by recursively following the is-a relation within class (e.g. 
saccharomyces is-a saccharomycetaceae is-a … fungi, etc.). Two further tables 
complement the SwissProt information. The keyword table lists keywords for the 
SwissProt protein. The databaseref table lists databases that specific proteins appear 
in. 

The secondary protein structure of yeast genes is provided in the secondary table. 
Each entry describes a secondary structure element for a specific gene, with details 
such as the type (a, b or c), length and order. Some aggregation on the secondary 
structure is provided by the attributes alpha, beta and coil in the gene table. 

Additionally we have employed a software tool for computing secondary structure 
homology. Ssea [1] is a program which computes alignments of protein secondary 
structures. It can compute either local or global alignments, with the latter usually 
aligning longer stretches at the cost of lower overall similarity. Therefore, we include 
both scores (global and local) in the database.  

The following tables summarises the amount of records in each of the tables. 
 
 
 



gene 4,053  databaseref 196,535 
hasfunction 12,839  keyword 14,270 
funcat 1,307  class 3,105 
homology 1,044,816  secondary 384,165 
eval 3,618,919  ssea 8,211,378 
swissprot 46,163    
  

 
Figure 1 Data model of the ILP 2005 Challenge database. 

4 Approach 

From a Data Mining standpoint, the most striking feature of the database is the 
lack of a single clearly defined target attribute. The target concept, the function of a 
gene, is set-valued: genes may have zero or more functions from a total list of 1307 
defined functional classes. To complicate things even more, the functional classes are 
not independent, but organised in a 5 level hierarchy known as FunCat. Hence, if a 
gene has a certain specific function that is at a leaf of the hierarchy (no subclasses), 
one could argue that it also belongs to any functional class that is an ancestor of the 
specified class. 

This functional classification scheme allows for a great many target concepts. 
Specific functions however may be very rare, and any relation to very similar 
functions (such as siblings in the hierarchy) will be lost. As an alternative, we have 



opted for treating the classes on the highest level (level 1) in the hierarchy as target 
concepts. If a gene has a function that is a descendent of a specific level 1 class, we 
treat this gene as a positive example of that class. Of the 28 level 1 classes that appear 
in the FunCat hierarchy, 19 feature in the yeast.labelled sample (including 
surprisingly the function 99 unknown). We therefore will assume 19 target concepts 
from now on. We would like to stress however that adding any other FunCat related 
target concept would be just as easy, were one so inclined. 

As was mentioned, Safarii requires any target concepts to appear as attributes in 
the target table (gene). A first step therefore is to preprocess the tables funcat, 
hasfunction and gene. We start by denormalising funcat on hasfunction, with the 
aid of ProSafarii. The effect is a replication of class information (specifically level1) 
in the hasfunction table. We then apply a so-called reverse pivot transformation to 
produce the 19 additional binary attributes in gene corresponding to each of the 19 
level 1 classes.  

The resulting gene table, primarily containing binary data, leads to a first 
opportunity for Data Mining. Using Safarii, we can search for association rules within 
the 19 functional classes. This analysis ignores any information outside the target 
table, and is hence propositional in nature. The rule discovery algorithm in Safarii 
discovers (propositional and multi-relational) rules with a fixed target attribute. The 
antecedent in this case consists of a conjunction of positive or negative conditions on 
the 18 remaining attributes. Rules are selected on the basis of their novelty (a.k.a. 
weighted relative accuracy). The rules are however of limited use to classify as yet 
unlabelled genes. The results of our first Data Mining approach appear in the next 
section. 

Our next approach is to involve in the previous mining exercise more detailed 
information about the functional hierarchy. We continue with our 19 potential targets, 
but also include tables funcat and hasfunction, making our analysis multi-relational. 
Apart from some trivial results due to the double appearance of level 1 information, 
we now also expect more specific functions, up to level 5 of the hierarchy to appear in 
the antecedent of the rules. 

Finally, we add all the available data to do a full multi-relational analysis. The aim 
is to find predictive models, rather than associations. Additional declarative bias was 
specified to ignore functional information of the gene at hand, but to include this 
information for any other genes related to the current gene through homology or ssea. 
Direct functional information in the gene table is ignored as this information will not 
be available either when predicting functions of as yet unseen genes. 

5 Results & Interpretation 

We start by showing some results for our first approach, rule discovery in the 
propositional data of level 1 functions. Because of the relatively small size of the table 
involved (4053 records by 20 attributes), the results per selected target function could 
be obtained very quickly, within seconds. Within the returned rules, negative rules, 
expressing an inverse relationship between functions, were common. This is not 
surprising given the non-overlapping definition of classes in FunCat. Below we give 
some examples of positive rules as well as a mixed rule, additionally we provide some 
biological justification. The numbers indicate the probability of the antecedent, the 



conditional probability of the consequent, and the prior of the consequent, 
respectively. 
 
TRANSCRIPTION (11) ∧  CELLULAR TRANSPORT, TRANSPORT 
FACILITATION AND TRANSPORT ROUTES (20) → PROTEIN WITH BINDING 
FUNCTION OR COFACTOR REQUIREMENT (16) (1.5%, 53.2%, 22.0%) 
 

This rule makes sense from a biological point of view. If a protein is involved in 
transcription and cellular transport, common sense would say that this specific protein 
transports a molecule involved in transcription, e.g. RNA. The target, being category 
16, tells us that this specific protein has binding qualities, which tells us that it binds 
to a transcription-associated factor and transports this factor to a specific place. A 
good example for this rule is protein ytypl190c, which belongs to the categories 
11.02.03.04 transcriptional control, 11.04.03 mRNA processing, 16.03.03 RNA 
binding and 20.01.21 RNA transport. So from the terms transcriptional control, 
mRNA processing and RNA transport, it can be inferred that the protein also has 
binding qualities, in this case being the binding of an RNA molecule. 
 

INTERACTION WITH THE CELLULAR ENVIRONMENT (34) ∧  CELLULAR 
COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM (30) → PROTEIN 

ACTIVITY REGULATION (18) (2.1%, 36.8%, 5.1%) 
 
CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM (30) 
∧  ¬ CELLULAR TRANSPORT, TRANSPORT FACILITATION AND 
TRANSPORT ROUTES (20) → PROTEIN ACTIVITY REGULATION (18) (4.4%, 
28.3%, 5.1%) 
 
CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM (30) 
∧  CELL RESCUE, DEFENSE AND VIRULENCE (32) → INTERACTION WITH 
THE ENVIRONMENT (36) (1.2%, 4.1%, 0.1%) 
 

Cell rescue often has something to do with response to extra-cellular influences, 
like high pH, high salt concentrations etc. So it is clear that it has to somehow interact 
with the environment to initiate cell rescue. The protein with identifier ytylr362w is a 
good example. It belongs to the categories 30.01.05.01.03 MAPKK cascade, 30.05 
transmembrane signal transduction, 32.01.03 osmotic and salt stress response, 
32.01.11 nutrient starvation response and 36.20.35.09.05 osmotic response. The 
MAPKK cascade is also known to transduce signals in response to a variety of growth 
factors, cytokines and stress, so it fits perfectly in this picture. One could say that this 
specific protein responds to salt stress via a transmembrane-MAPKK-cascade and 
initiates the response to this stress. 

We now turn to our second approach: finding multi-relational associations that 
include specific functions. The following is an example of an antecedent in a rule with 
target 16 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT. 
There clearly is an association with function 14.11 assembly of protein complexes, 
which can compete with the associations mentioned above. 



 

 
(4.3%, 57.9%, 22%) 
 

The following two rules (again target 16) predict the function of new genes based 
on their homology with other genes that have functions 16 and 11 
(TRANSCRIPTION), respectively. 

 

 
 

 
 (56.6%, 29.0%, 22%) 
 
 

This rule predicts the following: Given a protein A with function 11 and a similar 
protein B with e-value of this similarity below 0.54, then B is predicted to have 
function 16. What this rule says is that proteins with function 11 and proteins with 
function 16 are closely related. Proteins involved in transcription, like proteins 
dealing with RNA synthesis, RNA processing or RNA modification, often also have 
binding functions. Although some proteins with function 11 do not have function 16, 
they still could have one domain which is responsible for binding a specific biological 
entity (e.g. another protein or RNA), hence the low e-value in a homology search.  

The following rules were obtained for target 36 INTERACTION WITH THE 
ENVIRONMENT: 

 
 

 

 
(3.1%, 1.6%, 0.1%) 
 

 
 

 
 (1.1%, 4.4%, 0.1%) 
 
 

 

 
 
 
 
 
(52.3%, 0.2%, 0.1%) 
 



 

 
(4.5%, 1.1%, 0.1%) 

 

 

 
(2.3%, 2.2%, 0.1%) 
 

The first rule says that if a protein is very similar to another protein, with an e-
value lower than 2e-26, and this second protein comes from the organism 
saccharomycetales, which is derived from the SwissProt-entry, then the original 
protein belongs to the functional category 36. This should not come as a surprise, 
because Saccharomyces cerevisiae belongs to the class Saccharomycetaceae, which is 
a subclass of Saccharomycetales. So the main reason for this rule is that through the 
course of evolution, proteins in this category remained intact, so this might be a case 
of true homology of proteins due to a common ancestor. 

Interestingly, this is true for another organism, the nucleopolyhedrovirus which 
belongs to the Baculoviridae. This could mean that the proteins involved are 
conserved by evolution, although the virus and the yeast might not have a common 
ancestor. Another possible explanation would be that this similarity occurs between 
proteins which take part in interaction with the environment and these proteins, 
regardless of the organism they occur in, share a similar sequence and structure. 

6 Conclusion 

The preliminary findings presented in this paper show that interesting results can 
be obtained from the yeast database. The results make sense biologically after an 
initial informal inspection by a domain expert. Due to constraints of space and time 
we were only able to perform a shallow analysis, but we expect more specific results 
after a more substantial analysis. Input from the data-owners on good target concept 
definitions would help in this respect. 
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