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Abstract—Subgroup discovery suffers from the multiple
comparisons problem: we search through a large space, hence
whenever we report a set of discoveries, this set will generally
contain false discoveries. We propose a method to compare
subgroups found through subgroup discovery with a statistical
model we build for these false discoveries. We determine how
much the subgroups we find deviate from the model, and hence
statistically validate the found subgroups. Furthermore we
propose to use this subgroup validation to objectively compare
quality measures used in subgroup discovery, by determining
how much the top subgroups we find with each measure
deviate from the statistical model generated with that measure.
We thus aim to determine how good individual measures are
in selecting significant findings. We invoke our method to
experimentally compare popular quality measures in several
subgroup discovery settings.

Keywords-Statistical validation, subgroup discovery

I. INTRODUCTION

Subgroup discovery [1], [2] is a data mining framework
(closely related to Contrast Set Mining [3] and Emerging
Pattern Mining [4]; see also [5]) concerned with discovering
subgroups that satisfy certain user-specified constraints. In
this process, we explore a large search space to find subsets
of the data that have a relatively high value for a given
quality measure. Because of the magnitude of the candi-
date set, the process suffers from the multiple comparisons
problem [6], which roughly states that when considering
a large number of candidates for a statistical hypothesis,
some candidates will inevitably be incorrectly labeled as
passing the test. Hence one of the many practical problems
in subgroup discovery is that it is nontrivial to determine
whether discovered subgroups are actual discoveries, or false
discoveries caused by random artifacts.

In this paper, we draw upon statistical theory to build
a model for false discoveries. Using this model, a number
of practical problems in subgroup discovery can be solved.
When applying subgroup discovery to a dataset, one is
often faced with the nontrivial task of choosing the right
parameters for the discovery algorithm, in order to obtain
a reasonable collection of results. The problems we intend
to address are related to these parameter-setting issues.
First of all, with the gradually extending range of quality

measures available, for ‘classical’ subgroup discovery [7],
[8] but also for non-standard variants such as regression [9],
[10] and Exceptional Model Mining [11], [12], the issue of
selecting the right measure for the task at hand is often hard.
Users of discovery tools often choose the measure based
on their personal familiarity, or simply proceed with the
default choice. We aim to provide more objective guidelines
for selecting the measure that is most likely to produce
interesting and exceptional results, and present empirical
results that indicate an order amongst quality measures.

A second algorithm-tuning question we intend to address
is that of setting a minimum threshold for the selected
quality measure. Different measures have different domains,
and end-users find it hard to set a reasonable value. Ideally,
one would like to choose a minimum quality, such that
all subgroups exceeding this value are reliably exceptional,
and do not include ‘random’ results that stem from the
potentially large search space and the multiple comparisons
problem [6] inherent to all discovery methods. In other
words, given some desired significance level α (typically
5% to 1%), we would like to obtain the corresponding
minimum quality for the measure and dataset in question. As
a converse, but very related task, one would like to compute
a p-value for each reported subgroup, that indicates to what
extent the result is statistically significant.

As mentioned, subgroup discovery potentially suffers
from the multiple comparison problem. The main contri-
bution of this paper is the introduction of a method that em-
ploys a randomization technique to build a statistical model
for the false discoveries caused by the multiple comparisons
problem. Using this statistical model, we can refute many
insignificant results returned by the discovery algorithm, and
thus identify a set of on average more interesting subgroups.
Furthermore, we employ the statistical validation to provide
an experimental comparison of measures, and propose a
suitable choice of measure.

The article is organized as follows. In Section II, we
recall basic subgroup discovery and give a more formal
description of our problems. In Section III, we introduce
the method used to compare found subgroups with a model
for false discoveries. Section IV discusses currently used



validation approaches and other related work. Our method is
empirically illustrated in Section V, after which we interpret
the results in Section VI. Section VII concludes the paper
with a summary.

II. PRELIMINARIES

Throughout this paper we assume a dataset Ω with N
elements (data points) that are (h+ 1)-dimensional vectors
of the form x = {a1, . . . , ah, `}. Hence, we can view our
dataset as an N × (h + 1) matrix, where each data point
is stored as a row xi ∈ Ω. We call ai =

{
ai1, . . . , a

i
h

}
the

attributes of xi, and `i its target. Attributes are taken from
an unspecified domain A. At this point, we will assume that
` is a single value from a discrete domain, which is the case
in traditional subgroup discovery. In Section V-C we will
explore other possible target domains.

For our definition of subgroups we need to define patterns.
Usually a pattern is created by building a conjunction of
constraints on singular attributes, and a data point is covered
by the pattern if all constraints are satisfied. Hence a pattern
is an intensional description of a part of our dataset, and its
extension is the subgroup of records covered by the pattern.
For practical reasons, in this paper we will technically define
patterns to be functions p : A → {0, 1}. A pattern p covers
a data point xi if and only if p

(
ai
)

= 1. We denote the
space of all patterns by P .

Definition (Subgroup). A subgroup corresponding to a pat-
tern p is the bag of data points Gp ⊆ Ω that p covers:

Gp =
{
xi ∈ Ω

∣∣ p (ai) = 1
}

From now on we omit the p if no confusion can arise,
and refer to a subgroup as G. We write n for the size of G.

We can now formally define a quality measure:

Definition (Quality measure). A quality measure is a
function ϕ : 2Ω → R which assigns to each subset of the
data exactly one numeric value.

Notice that this definition may seem trivial. However,
it implies that we allow any kind of quality measure. No
special properties such as antimonotonicity are required; any
function assigning a quality value to a subset of Ω is suitable.

As mentioned in the introduction, subgroup discovery [1],
[2] is a data mining framework concerned with discover-
ing subgroups that satisfy certain user-specified constraints.
These constraints usually include a lower bound on the qual-
ity of a subgroup ϕ (Gp) ≥ t, as well as a minimum support
threshold n ≥ minsup that guarantees a lower bound on the
size of the corresponding subgroup. Further constraints may
involve properties such as the complexity of the generating
pattern p. In most cases, a subgroup discovery algorithm will
traverse a search lattice of candidate patterns in a top-down,
general-to-specific fashion. The structure of the lattice is
determined by a refinement operator ρ : P → 2P , a syntactic

operation which determines how simple patterns can be
extended into more complex ones by atomic additions. In
our application, the refinement operator is assumed to be
a specialisation operator: ∀q ∈ ρ(p) : p � q (p is more
general than q).

The actual search strategy used to consider candidates is
a parameter of the algorithm. We have chosen the beam
search strategy [13], because it nicely balances the benefits
of a greedy method with the implicit parallel search resulting
from the beam. Beam search effectively performs a level-
wise search that is guided by the quality measure ϕ. On
each level, the best-ranking w patterns are refined to form
the candidates for the next level. This means that although
the search will be targeted, it is less likely to get stuck in a
local optimum, because at each level alternatives are being
considered. The search is further bounded by complexity
constraints and the minsup constraint. The end-result is
a ranked list of patterns (each one corresponding to a
subgroup) that satisfy the inductive constraints.

Notice that while we choose to traverse the search space
heuristically using beam search, algorithms do exist that
provably find the global top k subgroups without resorting
to a heuristic, given certain restrictions. Such restrictions
usually compel the attribute domain to be nominal [1], [2], or
impose an anti-monotonicity property on the quality measure
which is then used to prune the search space [14]. We choose
to free this paper from such restrictions, but notice that this
is by no means essential to the described method. It would
also work with an exhaustive search setting. Regardless of
restrictions, it may very well be the case that the global top
k contains subgroups that cannot be statistically validated,
especially if the search space is not too large. Even if a
run of a subgroup discovery algorithm has the goal to find
the top k subgroups, there may not be k statistically valid
subgroups to report, and this may be of interest to the end-
user. Merely finding the top k is not a justification of the
siginificance of these k subgroups, hence this is not enough.

A. Problem statement

As mentioned in the introduction, the main contribution
of this paper is a method that builds a statistical model for
false discoveries. This model can be used to solve a plethora
of practical problems, of which we will empirically illustrate
two:

1) given a dataset Ω, a quality measure ϕ and a set S of
subgroups found with this measure through subgroup
discovery, determine the statistical significance of each
element of S;

2) given datasets Ω1, . . . ,Ωt, determine which of the
given quality measures ϕ1, . . . , ϕg are better in distin-
guishing the top k subgroups found with that measure
from a random baseline, for a given k.



III. VALIDATION METHOD

In order to deal with the aforementioned multiple com-
parisons problem, we introduce a method consisting of the
following steps: first we generate a random baseline model
for false discoveries. Then we consider a discovered sub-
group statistically sound if its measure value is significantly
better than the random baseline. Finally, a quality measure
is statistically sound if the best subgroups found with it
are statistically sound. We can express this method more
formally:

Suppose a dataset Ω, quality measures ϕ1, . . . , ϕg , and
sets of subgroups S1, . . . ,Sg where ∀gi=1 : Si is found
through subgroup discovery using quality measure ϕi.

I. ∀gi=1 : use a randomization technique to generate
baseline subsets Ri1, . . . , R

i
m ⊆ Ω for arbitrarily large

m;
II. ∀gi=1 : build a statistical model for false discoveries

based on ϕi
(
Ri1
)
, . . . , ϕi

(
Rim
)
. Then determine for

each S ∈ Si how much ϕi (S) deviates from the
model;

III. choose any positive integer k, and determine prefer-
ence between the quality measures by comparing the
deviations corresponding to the top k subgroups in Si.

Since we determine the statistical soundness of quality
measures in terms of their ability to deviate from a random
baseline, we could interpret this as a test to what extent a
quality measure is also a measure for exceptionality. Notice
that our method does not consider the coherence of a set S
of subgroups: we do not solve the problem of redundancy
within such a set, we do not solve the problem of selecting a
small subset of jointly interesting subgroups in S, we merely
consider for every single subgroup in S the likelihood that
it is deemed interesting because of the multiple comparisons
problem. The rest of this section investigates techniques for
each step in the method separately.

A. Randomization techniques
There are several randomization techniques we can use

to generate the baseline subsets Ri1, . . . , R
i
m (i.e. perform

step I of the method). We will employ the randomization
technique that is currently the most popular in data mining:
swap randomization. Recently, Gionis et al. have published
a paper detailing its use [15]. In its most radical form for
zero-one matrices, swap randomization shuffles the elements
of the data matrix in such a way that all row and column
sums are kept intact, which is what the authors of [15] have
done for tests involving itemset mining. Swap randomization
is also frequently used for validating classifiers in a more
moderate form: only the column containing the class labels
is replaced by a random permutation of itself. For subgroup
discovery, it seems reasonable to use this moderate form of
swap randomization.

We generate the baseline subsets in the following way.
For each Rij to be generated, we create a swap-randomized

version of the data, by keeping all attributes intact but taking
a random permutation of the target column. Then we run our
subgroup discovery algorithm on the resulting dataset using
quality measure ϕi, and let Rij be the best subgroup found.

The rationale behind this process is that by swap-
randomizing the target column, we keep its distribution
intact, but remove all dependencies between the target
column and the attributes. Hence the best subgroup found
on the swap-randomized data represents the best-quality
discovery made while there is no connection between target
column and other attributes, apart from a connection caused
by random artifacts. In other words, this best subgroup
represents a false discovery, and its quality is among the
highest qualities a false discovery can have.

Another reason why a subgroup found on the swap-
randomized data is a good representation of a false dis-
covery is the fact that its discovery has resulted from the
same search process as employed while discovering actual
subgroups on the original dataset. Alternatively one could
easily choose a method to directly generate some random
baseline subsets for use in step I of our method. However,
a subgroup found on swap-randomized data goes through
the same motions of the subgroup discovery algorithm as
the actual subgroups found on the original dataset, i.e.
the same hypothesis space is traversed, the traversal is
performed in the same way, and the search is bounded by
the same constraints. Hence the generated false discovery
can be reasonably considered a false discovery of the search
process.

B. Building a statistical model

When we have generated the baseline subsets, there are
plenty of ways to build a statistical model from them (i.e.
perform step II of the method). The most straightforward
technique, and the simplest in terms of statistical inter-
pretability, is a direct application of the central limit theorem
(CLT) [16]. Under the assumption that m, the number
of baseline subsets, is sufficiently large, according to the
central limit theorem the mean of ϕi

(
Ri1
)
, . . . , ϕi

(
Rim
)

follows a normal distribution, since these are independent
and identically distributed random variables. We use the
sample mean and standard deviation as parameters for this
distribution, as suggested by the method of moments [17].
We call this distribution the Distribution of False Discoveries
(DFD). Let S ∈ S be a subgroup under consideration. We
can now formulate the null hypothesis

H0 : ϕ (S) is generated by the DFD

We can compute a p-value corresponding to this null hypoth-
esis for each S ∈ S, and this p-value gives us the deviation
required as result of step II of the method.

Notice that although the null hypothesis is fixed, its
interpretation may vary depending on the randomization
technique employed in step I of the method.



Using the DFD, we can not only validate a found sub-
group, but also compute threshold values for the quality
measure at given significance levels, prior to the actual
mining run. Such a threshold could be used as lower bound
on the quality of a subgroup in the subgroup discovery
process. This is a nontrivial contribution to the process, since
it is generally not easy for an end-user to set a sensible
lower bound for any given quality measure. Additionally,
such sensible values for a lower bound depend heavily on
the dataset at hand. Until now, it was common to use a
default value for such a lower bound by lack of a better
method; the DFD gives us more sensible threshold values.

C. Comparing quality measures

For performing step III, comparing the relative perfor-
mance of the quality measures, we use a technique recently
described by Demšar in an article [18] on statistical compar-
isons of classifiers over multiple data sets. First a Friedman
test [19], [20] is performed to determine whether the quality
measures all perform equivalently. This is a non-parametric
version of the repeated-measures ANOVA. For each test case
the quality measures are ranked by their performance; if
case of ties we assign average ranks. Let ri denote the
average rank over all test cases for quality measure ϕi,
∀i∈{1,...,g}, and let T denote the number of test cases. The
null hypothesis states that all measures perform similarly,
hence their average ranks should be equal. Under this null
hypothesis, the Friedman statistic

χ2
F =

12T

g(g + 1)
·
∑
i

(
ri −

g + 1

2

)2

follows a chi-squared distribution with g − 1 degrees of
freedom.1

If the null hypothesis of the Friedman test is rejected,
we can determine which quality measures are significantly
better than others with a post-hoc test. Following Demšar’s
proposal, we use the Nemenyi test [21], which is similar to
the Tukey test for ANOVA. In this test a critical difference
(CD) is computed:

CD = qα

√
g(g + 1)

6T

where the critical values qα are based on the Studentized
range statistic divided by

√
2. If the difference between the

average ranks of two quality measures surpasses this CD,
then the better-ranked measure performs significantly better.

IV. RELATED WORK

Statistical validation specifically tailored for subgroup
discovery barely exists. Fortunately, many techniques for
statistical validation in local pattern mining settings, which

1careful readers may notice that this formula is not the one given by
Demšar. It is, however, the one given by Friedman himself. Equivalence of
the formulae can be shown in four lines of math.

have been developed ever since association rules were
invented, are applicable in subgroup discovery. Most of
the recent approaches employ empirical p-values, i.e. a
pattern to be validated is assigned as p-value the fraction of
randomly generated results that outperform the pattern. This
method has been applied in articles concerning significant
query results on multi-relational databases [22] and swap
randomization on high-dimensional 0/1 datasets [15]. In
many circumstances, the use of empirical p-values is very
appropriate. However, we attempt to validate subgroups
with a high quality by comparing them to random descrip-
tions/subsets that are expected to have moderate quality.
Since we are trying to validate outliers in the quality measure
distribution, in many cases we will find empirical p-values
to be zero for many measures, hence they are not very useful
for comparing the measures with each other.

A method that assigns nonempirical p-values to single
association rules has been proposed by Megiddo and Srikant
[23]. They use random approximation techniques to assign
significance to single association rules and sets of associa-
tions. Unfortunately, their choice of underlying distribution
is not motivated in any way.

Quality measures exist for subgroup discovery that di-
rectly implement a statistical significance test. For instance,
one can show that Klösgen’s mean test (

√
n (p− p0)) [24]

is order-equivalent to a t-test. Also well suited for subgroup
discovery is the chi-squared

(
χ2
)

measure [25], originally
defined for association rules. While such quality measure
automatically statistically validate single subgroups, their
application in subgroup discovery and hence use in a vast
search space will invariably suffer from the multiple com-
parison problem, and hence the results will fall prey to the
problem we attempt to solve in this paper.

Tan et al. have developed a method [26] to compare
quality measures on contigency tables by intrinsic properties.
The results this method delivers are somewhat inconclusive,
hence the method relies on experts to decide which measure
is to be preferred. Also, the method seems not to be
extendable beyond k-way contingency tables.

Finally, Webb devised a procedure to assign significance
to individual subgroups [27]. He gives two different ways
to perform a Bonferroni-style adjustment to the signifi-
cance level: direct adjustment, and an approach that is very
similar to the train-and-test-set procedure known from the
determination of the predictive accuracy of a classifier. As
is typical for Bonferroni correction, the adjustments may
be a bit too strict. This especially holds when the search
space becomes very large, for instance when dealing with
numeric attributes. When applying a Bonferroni correction
one assumes that the different hypotheses are independent,
which in a subgroup discovery setting is not the case, leading
to too strict adjustments to the significance level. Also,
rather than a method that assigns significance to subgroups,
Webb’s work is more a framework that can be used with



any statistical hypothesis test.

V. EXPERIMENTS

To illustrate how our method performs, we experimented
on several UCI datasets. For the subgroup discovery process
we use the parameterized implementation available in the
Cortana discovery package [28]. This Java implementation
is an open-source spin-off of the Safarii Data Mining system.

Although we have so far stated our problems and method
in terms of subgroup discovery with only one discrete
target, this is by no means essential to the method. In
fact, it can be applied to any local pattern discovery tech-
nique. We illustrate this by applying our method not only
to traditional subgroup discovery, but also to an instance
of Exceptional Model Mining (EMM) [12], an extension
of subgroup discovery incorporating more complex target
concepts. Whereas in traditional subgroup discovery there
is only one target attribute `, in EMM the target concept
may consist of multiple attributes. EMM is instantiated by
choosing a model class over these attributes, and defining
a quality measure for this model class. For instance, one
could be interested in finding conditions under which there is
an exceptional ratio between two designated features. Then
the chosen model class would be a simple linear regression
model, and the quality measure would be based on the slope
of the fitted regression line. This particular EMM instance
would, given a dataset detailing the sales price of houses
and their lot size, allow one to find conditions under which
a set of houses has a relatively high price per square meter.

Both EMM and subgroup discovery are supervised set-
tings, but nothing in the method requires this, so we could
also apply it in unsupervised settings such as association
discovery. We test our method on traditional subgroup
discovery in Sections V-A and V-B, and on the EMM variant
in Section V-C.

We pick the following parameters for the beam search
process. On each level, we select the w = 25 best patterns,
and refine these to create the candidate patterns for the
next level. This beam width w creates a balance between
redundancy in the reported patterns and search efficiency on
the one hand, and search extensiveness on the other hand.
When refining a pattern by adding a constraint on a numeric
attribute, we partition the domain into eight equal-height
intervals and consider inequalities on these dynamically
allocated split points as the refining constraints. To bound the
complexity of the patterns we use a search depth of d = 3
(at most three refinements). We let minsup =

⌊
N
10

⌋
, i.e. a

pattern must be covered by at least 10% of the dataset. These
parameter settings are somewhat arbitrary; we believe that
this is not really relevant for the purpose of demonstrating
our new method.

Notice that the dynamic partition of a numeric attribute
into eight intervals uses more information from the attribute
than the information we would use if we would statically

Table I
UCI DATA SETS USED FOR THE EXPERIMENTS.

Dataset N # attributes |`|
discrete numeric

1. Adult 48842 8 6 2
2. Balance-scale 625 0 4 3
3. Car 1728 6 0 4
4. CMC 1473 7 2 3
5. Contact-lenses 24 4 0 3
6. Credit-a 690 9 6 2
7. Dermatology 366 33 1 6
8. Glass 214 0 9 6
9. Haberman 306 1 2 2

10. Hayes-roth 132 0 4 3
11. Ionosphere 351 0 34 2
12. Iris 150 0 4 3
13. Labor 57 8 8 2
14. Mushroom 8124 22 0 2
15. Pima-indians 768 0 8 2
16. Soybean 683 35 0 19
17. Tic-tac-toe 958 9 0 2
18. Wisconsin 699 0 9 2
19. Yeast 1484 1 7 10
20. Zoo 101 16 1 7

discretize the attribute in eight intervals. Suppose for the
sake of argument that we only refine candidate subgroups
by adding a constraint on one particular numeric attribute.
On search level one, the dynamic partition amounts to static
discretization. On search level two, however, we start with
candidate subgroups that have seven different sizes (the
eighth possibility is not a proper refinement). Each of these
is refined by dynamically partitioning into eight intervals,
leading to 49 different possibilities to start with on search
level three, etcetera. Hence the used information is much
more than the information used when statically discretizing.

The 20 datasets we have used for our tests with traditional
subgroup discovery, in the following two sections, can be
found in the UCI Machine Learning Repository [29]. Table I
contains details on the datasets considered. Here, |`| denotes
the number of distinct target values in the dataset.

Before experimenting with the method, let us shortly
substantiate the claim made in the previous section, that
empirical p-values are not very suitable in our setting. Figure
1 displays a histogram (represented by the twitchy line) of
qualities of 1000 random subsets on the CMC dataset with
target value no-use, normalized into Z-space (i.e. a subset
has value one on the x-axis in the histogram when its quality
is one standard deviation higher than the sample mean). The
figure also contains our CLT-based normal model fitted to
the random qualities (represented by the smooth curve) and
the 13 subgroups (represented by circles on the x-axis) found
using a very shallow search of d = 1. The rightmost nonzero
value of the histogram occurs at x = 4, hence all subgroups
to the right of that point are indistinguishable by empirical
p-values. The normal distribution never becomes zero, hence
does not suffer from this problem.



Gaussian Chart 2

Page 1

0.0

0.1

0.2

0.3

0.4

0.5

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

Figure 1. CLT-based model versus empirical p-values.

A. Validating subgroups

We will first illustrate how to use our method to solve
problem 1 from Section II-A: validating single subgroups.
To this end, we only need the method’s first two steps.

We consider just one quality measure: Weighted Relative
Accuracy (WRAcc) [24], arguably the most popular quality
measure in subgroup discovery. For each dataset, we perform
a subgroup discovery run for each target value, and report
the 1000 best subgroups. We then run the first two steps
of our method to determine how many of these subgroups
remain if insignificant subgroups are removed. We report the
average fraction of subgroups that is retained per dataset for
different significance levels in Table II.

As stated in Section III, one could also use the Distri-
bution of False Discoveries to determine quality measure
thresholds for given significance levels, a common practical
issue with subgroup discovery exercises. We illustrate this
by determining thresholds on the Contact-lenses dataset with
target value none. Notice that WRAcc can theoretically
assume values between −0.25 and 0.25. We find that with
significance level α = 10% a subgroup needs to have a
WRAcc of at least 0.054 to reject the null hypothesis that it
is a false discovery, with α = 5% a subgroup needs to have
a WRAcc of at least 0.068, and with α = 1% a value of at
least 0.093. For illustration, the best subgroup found on this
dataset with this target value has a WRAcc of 0.188.

Table II
FRACTION OF SUBGROUPS RETAINED WHEN REMOVING INSIGNIFICANT

SUBGROUPS.

Dataset α = 10% α = 5% α = 1%
Adult 1.000 1.000 1.000
Balance-scale 0.561 0.554 0.548
Car 0.650 0.591 0.518
CMC 0.506 0.484 0.445
Contact-lenses 0.069 0.069 0.052
Credit-a 1.000 1.000 1.000
Dermatology 0.838 0.808 0.761
Glass 0.738 0.675 0.562
Haberman 0.427 0.392 0.327
Hayes-roth 0.388 0.313 0.210
Ionosphere 1.000 1.000 1.000
Iris 0.902 0.879 0.834
Labor 0.628 0.567 0.401
Mushroom 0.967 0.966 0.964
Pima-indians 1.000 1.000 1.000
Soybean 0.724 0.713 0.689
Tic-tac-toe 0.493 0.446 0.311
Wisconsin 1.000 1.000 1.000
Yeast 0.687 0.673 0.647
Zoo 0.600 0.582 0.524

B. Validating quality measures

We can build on the instantiation of our model that
we used in the previous section to solve problem 2 from
Section II-A: validating quality measures. We select 12
quality measures for single discrete targets that are quite
common in subgroup discovery, and test them against each
other. The measures are WRAcc, |WRACC|, χ2, Confidence,



Table III
AVERAGE RANKS OF THE QUALITY MEASURES.

All datasets Binary datasets
Measure k = 1 k = 100 k = 1 k = 100
χ2 4.435 4.038 4.694 3.889
Jaccard 5.224 5.622 5.361 7.028
Correlation 5.235 4.679 5.361 4.667
|WRAcc| 5.288 4.571 5.306 4.333
G-measure 5.312 5.538 5.417 6.750
F-measure 5.582 5.718 5.250 6.778
WRAcc 5.800 5.027 5.417 4.722
Confidence 6.506 6.865 7.333 7.028
Laplace 6.553 6.654 7.278 6.139
Specificity 7.465 8.455 8.306 7.806
Purity 10.235 10.141 8.389 7.361
Sensitivity 10.365 10.692 9.889 11.500
χ2
F (α=1%) 261.916 292.001 40.674 57.618
CD (α=1%) 2.069 2.160 4.496 4.496

Purity, Jaccard, Specificity, Sensitivity, Laplace, F-measure,
G-measure, and Correlation. Details on these measures and
their origins can be found in the paper by Fürnkranz and
Flach [7].

For each dataset, we perform steps I and II of our method
the same way as in the previous section, with each of the
12 quality measures. We then compare the measures in step
III by comparing the p-values of the k best subgroups, for
both k = 1 and k = 100 (for k = 100 we take the average
p-values over the top 100 groups). Hence for all measures
we obtain for both choices of k one test score for each
combination of dataset and target value within that dataset.
For k = 1 this leads to a grand total of 85 test scores for each
quality measure. On both the Car and the Contact-lenses
dataset, no 100 subgroups are found that satisfy the minsup
constraint. Hence there are no results on these datasets for
k = 100, leaving a total of 78 test cases for k = 100.

The measures are subsequently ranked, where a lower test
score (p-value) is better. The resulting average ranks can be
found in the second and third columns of Table III. This table
also displays the results of the Friedman tests, the values for
χ2
F . With a significance level of α = 1% we need χ2

F to be
at least 24.73 to reject the null hypothesis that all quality
measures perform equally good. Hence we comfortably pass
this test.

Since the Friedman test is passed, we can now perform
Nemenyi tests to see which quality measures outperform
others. For the k = 1 setting, the critical difference CD
equals 2.069 with significance level α = 1%. For each pair
of measures we compute from Table III whether their differ-
ence is larger than CD, and if so, the one with the smaller
average rank is better than the other. The corresponding CD
chart [18] can be found in Figure 2. Such a chart features
a horizontal bar of length CD for each quality measure ϕi,
starting at its average rank. Hence ϕi is significantly better
than each quality measure whose bar starts to the right of
the bar of ϕi. For instance, in Figure 2 we see that χ2

Table IV
AVERAGE RANKS FOR CORRELATION MODEL MEASURES.

Measure Average rank
ϕent 1.75
r 3.00
r2 3.75
ϕabs 4.25
−r 4.75
−r2 5.25
ϕscd 5.25
χ2
F 21.96

CD (α=1%) 4.114

is significantly better than Laplace, Specificity, Purity, and
Sensitivity. Figure 3 displays the CD chart for the k = 100
setting.

When we have a dataset with many distinct target values,
we repeatedly let one of the target values correspond to
positive examples and the rest to negative examples. Hence
the more distinct target values we have, the lower the average
fraction of positive examples in the dataset. To see whether
certain quality measures suffer from this effect, we also
computed the average ranks considering only the 9 datasets
with a binary target. The results can be found in the last
two columns of Table III. Again, the average ranks easily
pass the Friedman test. Now that we have only 18 test
cases, the critical difference for the Nemenyi test becomes
CD = 4.496 with significance level α = 1%.

C. Beyond subgroup discovery

So far we have illustrated our method with measures
for subgroup discovery over a single discrete target. We
now turn to a variant of EMM [11], [12], an extension
of subgroup discovery incorporating complex target con-
cepts. This variant strives to find subgroups for which the
correlation between two attributes is significantly different
from their correlation on the whole dataset. Several quality
measures have been proposed for this problem [12]. We
validate measures for this setting on the datasets and target
concepts used in the original paper. The resulting average
ranks over the two datasets — Windsor Housing and Gene
Expression — can be found in Table IV. The Friedman test
value for these ranks is χ2

F = 21.96, where 16.81 would
be enough with 7 measures, so we can proceed with the
Nemenyi test. The critical difference is CD = 4.114 with
significance level α = 10% when testing 7 measures on
4 test cases (aggregating over the results for k = 1 and
k = 100). In these modest experiments we find that no
significant conclusions can be drawn.

VI. DISCUSSION

The previous section displayed the results experimentally
obtained with our new method; in this section we will
interpret them. We start with the results obtained by the
technique for validating subgroups in a set S found through
subgroup discovery.
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A. Validating subgroups

From Table II we find that we cannot refute any subgroups
from S in several datasets: Adult, Credit-a, Ionosphere,
Pima-indians, and Wisconsin. To explain this result, we
crafted a metalearning dataset from Tables I and II. We
selected the columns from Table I as attributes of our
metalearning dataset, and added three new columns, rep-
resenting the total number of attributes in the dataset, a
boolean column representing whether the dataset has discrete
attributes, and a boolean column representing whether the
dataset has numeric attributes. As target column we added
the last column of Table II: the fraction of subgroups retained
when insignificant subgroups are removed, with significance
level α = 1%. On this metalearning dataset we performed a
shallow (using search depth d = 1) but exhaustive subgroup
discovery run, using Klösgen’s mean test as quality measure.
The resulting metasubgroups should consist of those datasets
with a relatively high fraction of kept subgroups.

The best metasubgroup is defined by the condition that the
datasets have more than five numeric attributes. The eight
datasets belonging to this metasubgroup are Adult, Credit-
a, Glass, Ionosphere, Labor, Pima-indians, Wisconsin, and
Yeast. This set includes all datasets for which we cannot

refute any of the subgroups from S. This makes sense,
since for each dataset we have only considered the top 1000
subgroups, a fixed number independent of dataset character-
istics. Numeric attributes usually have many different values,
resulting in a hypothesis space that is much larger than it
would have been if the attributes would have been discrete.
Hence in datasets with relatively many numeric attributes,
it is more likely that the 1000 best subgroups represent
relatively rare spikes in a quality distribution consisting
mainly of low values. Therefore it is less likely that the
random baseline incorporates some of these spikes, and thus
the baseline is more likely to be relatively weak.

B. Validating quality measures

The results we obtained by the technique for validating
quality measures show that χ2 achieves the best performance
of all quality measures in distinguishing the top k subgroups
from false discoveries. Many of the relations between quality
measures, however, are not significant. For k = 1, all other
quality measures perform significantly better than Purity and
Sensitivity. Additionally, Specificity performs significantly
worse than Jaccard, Correlation, |WRAcc|, and the G-
measure, and χ2 significantly outperforms Laplace.

For k = 100, we see some slight changes: χ2 and



|WRAcc| now also perform significantly better than Confi-
dence, and Specificity is now additionally outperformed by
the F-measure and WRAcc while it no longer performs sig-
nificantly better than Purity. Finally, Correlation significantly
outperforms Confidence. Obviously, some measures might
be better than others in distinguishing the top k subgroups
from false discoveries when k = 1, while others might be
better when k = 100. The observed changes are not very
dramatic, and we consider the selection of k a user-derived
parameter in the method.

One of the significant relations that seems somewhat
peculiar, is the result that for both k = 1 and k = 100,
Confidence performs significantly better than Purity, while
the latter is defined to be max{Confidence, 1−Confidence}.
While there is a good theoretical reason to consider the Pu-
rity of a subgroup, we can see from the definition that Purity
has a lower bound of 0.5, hence the random baseline will
generate higher values with Purity than with Confidence.
Apparently the quality of the subgroups found with Purity
does not increase enough compared to those found with
Confidence to compensate for this effect.

By comparing the second and third columns of Table
III with the last two columns, we can see that |WRAcc|,
WRAcc, and particularly Purity perform better when we
restrict the tests to datasets with a binary target. These mea-
sures benefit from the fact that in these test cases we have
a better balance between positive and negative examples
in the data, compared to test cases on other datasets. We
can also read from the table that we have fewer measures
that are significantly better than others on datasets with a
binary target. This is mainly because because significance
is hard to achieve in an experiment with only 18 test cases
as opposed to 85 or 78 on all datasets. With 18 test cases
the critical difference for the Nemenyi test with significance
level α = 1% is CD = 4.496, rather than CD = 2.069 with
85 test cases. Since the average ranks range from 1 to 12,
a critical difference of 4.496 is substantial. More significant
differences between the quality measures can be expected
when tested on more datasets with a binary target.

The results for the EMM variant were generated on
a modest number of test cases. As a result, the critical
difference for the Nemenyi test is quite high, and one
could not expect to find many significant results. Expensive
experimentation may give a significant reason to prefer one
measure over another in this setting. For now, what matters
is that this illustrates that our method is applicable in more
general settings than just traditional subgroup discovery.

VII. CONCLUSIONS

We propose a method that deals with the multiple compar-
isons problem in subgroup discovery, i.e. the problem that
when exploring a vast search space one basically considers
many candidates for a statistical hypothesis, hence one will
inevitably incorrectly label some candidates as passing the

test. Our method tackles this problem by building a statistical
model for the false discoveries: the Distribution of False
Discoveries (DFD). This distribution is generated by, given a
dataset and quality measure, repeatedly running a subgroup
discovery algorithm on a swap-randomized version of the
data. In this swap-randomized version, while the distribution
of the target variable is maintained, its correlation with the
attributes is destroyed. Hence the best subgroup discovered
on this dataset represents a false discovery. The DFD is
then determined by applying the central limit theorem to
the qualities of these false discoveries.

Having determined the DFD, one can solve many prac-
tical problems prevalent in subgroup discovery. For any
given discovered subgroup, one can determine a p-value
corresponding to the null hypothesis that it is generated
by the DFD; refuting this null hypothesis implies that the
subgroup is not a false discovery. Given a set of quality
measures, one can use the DFD to determine which quality
measures are better than others in distinguishing the top k
subgroups from false discoveries. This gives an objective
criterion for selecting a quality measure that is more likely
to produce exceptional results. Finally, given some desired
significance level α, one could extract from the DFD a
minimum threshold for the quality measure at hand.

When validating single subgroups, we see that our method
removes insignificant subgroups found on datasets that have
few numeric attributes. From metalearning we find that on
large datasets, for instance with more than five numeric
attributes, the random baseline is more likely to accept many
patterns. This is reasonable because of the associated larger
hypothesis space. Table II shows that our method can remove
insiginficant subgroups on some of the datasets with more
than five numeric attributes, but not on all of them.

When we validate quality measures, we have outlined that
the method we described determines the extent to which a
quality measure is also an exceptionality measure. We have
seen that of the twelve measures for subgroup discovery we
tested, χ2 is the best exceptionality measure, and Purity and
Sensitivity are by far the worst. For the EMM correlation
model variant no significant conclusions can be drawn from
the modest experiments.

In this paper we have presented a technique making
extensive use of swap randomization. Notice that we do
not by any means claim to have invented this particular
randomization method. Also, its use in step I of the method
we introduced in this paper is not the only option available.
We have extensively explained why using swap randomized
data leads to a good model for false discoveries, but it comes
at a price: for every result of a subgroup discovery run
one wishes to validate, one has to run the same subgroup
discovery algorithm an additional m times, where m needs
to be large enough to satisfy the constraints of the Central
Limit Theorem. In the more traditional subgroup discovery
setting, one can usually afford this extra computation time.



For more complex settings, for instance the EMM variant
using Bayesian networks introduced in [11], this becomes
problematic. When computation time becomes an issue, one
might consider different randomization techniques to gener-
ate R1, . . . , Rm, for instance by simply drawing a random
sample from Ω of a certain size for each Ri. Before such a
technique can be employed, its theoretical ramifications need
to be explored. In future work, we also plan to empirically
investigate the effect of certain parameters on the outcome
of the method.
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