Multi-Relational Data Mining

(paper id: 294)

Arno J. Knobbe Hendrik Blockeel Arno Siebes Daniél M.G. van der Wallen
Syllogic B.V. Katholieke Universiteit Leuven CWI Syllogic B.V.
Hoefseweg 1 Department of CS P.O. Box 94079 Hoefseweg 1

3821 AE Amersfoort Celestijnenlaan 200A 1090 GB Amsterdam 3821 AE Amersfoort

The Netherlands 3001 Heverlee Belgium The Netherlands The Netherlands

aknobbe@syllogic.com hendrik.blockeel @cs.kuleuven.ac.be arno@cwi.nl d.van.der.wallen@syllogic.com

Abstract

An important aspect of data mining algorithms and systemsiis that they should scale well to large databases
A consequence of thisisthat most data mining tools are based on machine learning algorithms that work on
datain attribute-value format. Experience has proven that such 'single-table’ mining algorithms indeed scale
well. The downside of this format is, however, that more complex patterns are simply not expressible in
thisformat and, thus, cannot be discovered.

One way to enlarge the expressiveness is to generalize, asin ILP, from one-table mining to multiple table
mining, i.e., to support mining on full relational databases. The key step in such a generalization is to
ensure that the search space does not explode and that efficiency and, thus, scalability are maintained. In
this paper we present a framework and an architecture that provide such a generalization.

In this framework the semantic information in the database schema, e.g., foreign keys, are exploited to
prune the search space and, in the architecture, database primitives are defined to ensure efficiency.
Moreover, the framework induces a canonical generalization of agorithms, i.e., if the generaized
algorithms are run on a single table database, they give the same results as their single-table counterparts.
The framework is illustrated by the Warmr algorithm, which is a multi-relational generaization of the
Apriori agorithm.

I ntroduction

An important aspect of data mining algorithms is that they should scale well to large databases. Paying a
lot of attention to efficiency is especially necessary in the case of databases that may contain very complex
patterns. In such databases the search space of patterns may be so large that scaling to a large database is
impossible. This is precisely the reason why mining large relational databases containing more than one
table has been given very little attention. In this paper we show that analysing multiple tables efficiently is
very well feasible, and present a multi-relational data mining framework that exploits the extensive
information in the data model for optimisation. This knowledge can be used to significantly prune the
search space, and thus prevent the combinatorial explosion that would otherwise occur.

Most of the data mining algorithms which are currently available are based on an attribute-value setting
which restricts their use to datasets consisting of a single table (or relation). The attribute-value paradigm
only allows the analysis of fairly simple objects. It requires that each object can be described by a fixed set
of attributes each of which can only have a single (unstructured) value. To be able to represent more
complex and structured objects, one has to employ a relational database containing multiple tables. Each
object can be described by multiple records in multiple tables. To be able to analyse relational databases
containing multiple relations properly, specific agorithms will have to be written that cope with the
structural information that occurs in relational databases. The multi-relational data mining framework
described in this paper can be used to base many multi-relational data mining algorithms on.

The framework supports a range of multi-relational data mining algorithms, which are direct
generalisations of common attribute-value induction algorithms. We will explain how many of the
concepts used by attribute-value algorithms can be generalised to a multi-relational setting. Theideais for
these multi-relational data mining algorithms to be full generalisations of their attribute-value counterparts,
which means that if they were run on a database containing a single table, the result would be as if the
single table version of the algorithm was run. An important extension of attribute-value learning that is
achieved by multi-relational data mining can be found in the language that is used to describe patterns. In

attribute-value learning, such alanguage is based on sets of conditions on the attributes of the table, which
describe a particular selection of objects. In multi-relational data mining, one can not only have conditions
on the values of an attribute, but also on the existence of related records in other tables. Thisway, one can
also include statements about the structural information of objects in the selections.

The set of patterns derived from a relational database is potentially much bigger than the set of patterns
which can be derived from a single table. Therefore, alot of attention will have to be given to reducing the
search space and to efficiently evaluating potentially interesting patterns. We will show how a lot of
information which is stored in the data model can be used to prune the search space, and thus make the set
of candidate patterns manageable. The candidate patterns that are valid according to the data model, and
that will have to be evaluated, are sent to an efficient server which validates patterns against the data. This
server supports a small number of primitives, which can be used to provide the necessary statistics about
candidate patterns. These primitives are direct generalisations of those used in many data mining
architectures based on the attribute-value paradigm [7, 8, 9, 11]. These primitives can be expressed in SQL
and sent to a conventional RDBMS, or can be supported by a dedicated server which is optimised to
compute the primitives efficiently. We will briefly sketch the architecture of such a server, and the
primitives it supports. This architecture is a direct generalisation of an existing data mining architecture
which is successfully being used in several commercial products[8, 9, 13].

When using a relational database containing multiple tables, it is not always strictly necessary to use a
multi-relational data mining algorithm. There are ways of 'moulding’ a relational database into a single
table format, such that traditional attribute-value algorithms will be able to work with the database. One
way of doing this, is to create a universal relation, which involves joining al tables to form a single table.
The resulting universal relation can be extremely large and impractical to handle. The second way of
transforming a relational database into a single table involves the creation of new attributes in the central
fact table that summarise or aggregate information which can be found in other tables. This method is used
in the LINUS system [14, 15] among others. However, it produces very wide tables with lots of data being
repeated. Although more datais produced, alot of information about how the data was originally structured
islost, and along with that the main source for efficiency in multi-relational data mining. Also, the creation
of useful, understandable and informative new attributes may require a substantial amount of domain
knowledge, which may defy the purpose of KDD. Therefore, neither approach is very attractive, especialy
from an efficiency point of view, and a proper way of dealing with multiple relations is necessary.

The idea of mining from multiple tables is not a new one. It is being studied extensively in the field of
Inductive Logic Programming (ILP) [6, 15]. However, these approaches are mostly based on data stored as
Prolog programmes, and little attention has been given to data stored in relational database and to how
knowledge of the data model can help to guide the search process [1, 16, 21]. Nor has a lot of attention
been given to efficiency and scalability issues. Our approach combines the achievements of the KDD field
with some of those of the ILP field. We will demonstrate how existing ILP agorithms [2, 4], which have
shown their practical applicability, can be implemented as special instances of our multi-relational data
mining framework. Where ILP can be seen as learning from a set of predicates, multi-relational data
mining can be seen as learning from a relational database. Extensional predicates, i.e. those predicates for
which only ground facts exist, are the counterparts of tables in arelational database. Intentional predicates,
i.e. those predicates for which also rules are given, correspond to the concept of views. However, multi-
relational data mining differs from ILP in three aspects. Firstly, it is restricted to the discovery of non-
recursive patterns. Secondly, the semantic information in the database is exploited explicitly. Thirdly, the
emphasis on database primitives ensures efficiency.

The outline of this paper is as follows. In Multi-Relational Data Mining we describe the basic problem
we intend to solve. A description is given of how to model data in a relational database, and how high-
level knowledge about the database can be given. In the section Framewor k we describe the basic multi-
relational data mining framework, and specifically how knowledge from the data model is being used in to
prune the search space. An efficient architecture to support the multi-relational data mining framework is
presented in Architecture. To demonstrate how our framework can be used to implement multi-relational
data mining algorithms, we give an algorithm for finding association rules in multiple tables, in section
Instance. We end with some conclusions and future work, in Conclusion.

Multi-relational data mining

We will assume that the data to be analysed is stored in arelational database [3, 20]. A relational database
consists of a set of tables and a set of associations (i.e. constraints) between pairs of tables describing how
records in one table relate to records in another table. Both tables and associations are also known as
relations, so we will use the former terminology to be able to distinguish between the two concepts. An
association between two tables describes the relationships between records in both tables. The nature of
this relationship is characterised by the multiplicity of the association. The multiplicity of an association
determines whether several records in one table relate to single or multiple records in the second table.
Also, the multiplicity determines whether every record in one table needs to have at least one
corresponding record in the second table. More formally, we define the following two predicates related to
the multiplicity of an association A between two tables P and Q.

Definition 1 Multiple(A, P) iff every record in Q may correspond to multiple recordsin P.
Definition 2 Zero(A, P) iff arecord in Q may have no corresponding record in P.

Note that these predicates are defined both for P and Q, and both predicates may or may not hold for either
P or Q. Thisway there are 16 different possible multiplicities for association A.

A special case of an association between two tablesis aforeign key relation. A foreign key relation from a
foreign key intable P to a primary key in table Q is an association for which the following hold:

Multiple(A, P), Zero(A, P), not(Multiple(A, Q)), not(Zero(A, Q))
Most associations in a physical data model will be foreign key relations.

Twpe
Dwwnerianme
Buwerhlame

Parent

Mame Name

fige Age

Income Gender
ParentMame

Figure 1 The data model of our example database.

Example 1 Figure 1 shows an example of a data model that describes parents, children and toys, as well as
how each of these relate to each other. We will be referring to this example throughout this paper. The
data model shows that parents may have O or more children, children may have O or more toys, and parents
may have bought O or more toys. Note that toys owned by particular child may not necessarily have been
bought by their parents. They can be presents from other parents. Also note that children have one parent
(for simplicity).

Discovering multiplicities Associations between tables are part of the conceptual data model of a
database. In the physical data model, the relationship between records is materialised by attributes in the
two tables, which are known as keys. Keys may be built up of one or more attributes, but without loss of
generality we will assume that they consist of a single attribute. The multiplicity of associations between
tablesis usually determined during the modelling phase of the database. However, the multiplicity can also
be discovered from an existing database. Such aprocessis similar to the discovery of foreign key relations,
described in [12]. Given the number of records (n) and the cardinality (c) of the key attribute of P, Q and
the join J of P and Q respectively, we can use the following decision tree to determine the values of
Multiple(A, P) and Zero(A, P) (analogous for Q).

Zero(A,P) Multiple(A,P)

Ng=n;
Cp=nNp
< i,
C;=n
Cp#Np N
CJ;énQ

Objects and patterns Even though the data model consists of multiple tables, there is till only a single
kind of objects that is central to the analysis. Y ou can choose the kind of objects you want to analyse, by
selecting one of the tables as the target table. Each record in the target table, which we will refer to as to,
will now corresponds to a single object in the database. Any information pertaining to the object which is
stored in other tables can be looked up by following the associations in the data model. If the data mining
algorithm requires a particular feature of an object to be used as a dependent attribute for classification or
regression, we can define a particular target attribute within the target table.

r
.
;
.

= T 4 T

The purpose of multi-relational data mining will be to discover interesting sets of objects in a relational
database. We will refer to descriptions of potentially interesting sets of objects as multi-relational patterns,
or simply patterns when clear from the context. To express a pattern one can use SQL or first order logic
expressions. Instead, we will be using the graphical language of selection graphs, defined in the next
section, which can be transated to either language. One can use multi-relational patterns when looking for
interesting subgroups [21] or frequent patterns [17]. In the context of prediction, one can use multi-
relational patterns asleavesin adecision tree, or as the left-hand side of predictive rules.

Definition 3 The support of a multi-relational pattern P in a database D is number of objectsin D that are
covered by P, which is equal to the number of selected recordsin the target table.

Example 2 In figure 1, the highlighting of the attribute Car in the Parent table indicates that Parent is the
target table and Car is the attribute of interest, the target attribute. This means that our primary interest is
in the parents, and that we will be considering different sets of parents in order to come up with good
indicators for classifying parents as car owners or not.

Framework

In order to describe the set of conditions related to a multi-relational pattern, we introduce the concept of
selection graphs:

Definition 4 A selection graph G is a pair (N, E), where N is a set of pairs (t, C), t is a table in the data
model and C is a possibly empty, set of conditions on attributes in t of type t.a operator c; the operator is
one of the usual selection operators, =, >, etc. E isa set of triples (p, q, a) called selection edges, where p

and q are selection nodes and a is an association between p.t and q.t in the datamodel. The selection graph

contains at least one node ny that corresponds to the target table ty. The objects in the target table that are

covered by a selection graph G are those recordsin ty:

. that satisfy the conditions on t,

. for which, recursively, there exist tuples in the other tables in the graph that are linked via the
indicated associations and satisfy the conditions defined for that table.

Selection graphs represent selections of objects. The selection node n represents a selection of records in
the corresponding table n.t which is determined by the set of conditions n.C and the relationship with
records in other tables characterised by selection edges connected to n. Selection graphs are more intuitive
than expressions in SQL or Prolog, because they reflect the structure of the data model, and refinements to
existing graphs may be defined in terms of additions of edges and nodes.

A selection graph can be trandlated to SQL or Prolog in a straightforward manner. The following algorithm
shows the tranglation to SQL. It will produce alist of tablestable list, alist of join conditions join_list, and
alist of conditions condition _list, and combine these to produce a SQL-statement. A similar trandation to
Prolog can be made. The fact that we state sel ect di sti nct rather than sel ect is caused by the
fact that a record in ty may be covered by the selection graph in multiple ways. Since the target table
represents our objects, counting them once suffices.

table list =*
condition_list =*
join_list =
for each node i in selection graphd®
table_list.add(i.table_name + ‘' T* +1)
for each condition c in ido
condition_list.add(‘T* +i+ "' +¢)
for each edge e in $lo
join_list.add(
e.left_node + ‘. +
e.left_attribute + ‘' =* +
e.right_node + ‘. +
e.right_attribute)
return ‘sel ect distinct *+
to+ . + to.primary_key +
‘from'+table_list +
“wher e ' +join_list +
“and * + condition_list

Example 3 The following selection graph, and its corresponding SQL statement, represents the set of
parents older than 40, who have at least one child, and bought one toy (not necessarily for one of their own
children):

Child

Parent

Age>40
Toy

sel ect distinct Parent. Name

fromParent TO, Child T1, Toy T2

where TO0. Name = T1. Parent Nanme and TO. Nane = T2. Buyer Nane
and TO. Age > 40

Refinement. The multi-relational data mining framework proposed in this paper is based on the idea of a
level-wise search for patterns [17], which is basically a top-down search. During the search, patterns will
be considered and those that are promising will be refined. For a given selection graph G we define three
refinement operations:

. Add condition. This refinement will simply add a condition to a selection node in G without
actually changing the structure of G.
. Add edge and node. This refinement will instantiate an association in the data model as an edge

together with its corresponding table and add these to G.

Child
Parent
To
Il ~ \y
. Add edge. This refinement will add an edge between two nodes in G. This refinement is only
valid when an association exists between the two corresponding tables in the data model.
Child
Parent
I
I
Toy

This set of refinements is the main source of efficiency for our multi-relational data mining framework. By
only allowing the addition of edges when consistent with the data model, unnecessary and invalid patterns
will be pruned from the search space. The three refinements exploit the existence of associations between
tables for optimisation. Below we will show how not only the existence, but also the multiplicity of an
association can be used to achieve further efficiency.

Refinement & Multiplicity Which refinements are possible and the way the search algorithm uses these
refinements is governed by the multiplicity of the available associations. Knowledge about the nature of
associations between tables can therefore be used to guide and optimise the search. Note that once
information about multiplicity is available, these decisions can be made in constant time. We will use this
knowledge in three possible ways:

. Look-ahead. For some refinements to a multi-relational pattern, the set of objects that support a

pattern is not actually changed. Therefore, it may be desirable to use a look-ahead in the form of
extra refinements [2]. Given the multiplicity of an association involved in a refinement, we can
directly decide whether this refinement changes anything to the support of the pattern, and
therefore whether the look-ahead is necessary. For example, if we know from the data model that
all parents are required to have at least one child, we know that refining the pattern ‘all parents’ to
‘al parents who have a child’ will have no effect on the support of his pattern. The use of look-
ahead when refining G from table P using an association A from P to Q is necessary when the
following holds: not (Zero(A, Q)).

. Multiple instantiations of associations. In some cases it is desirable to have multiple
instantiations of a particular association in the selection graph. For example, it may be interesting
to consider parents with several children with various characteristics. Refining the pattern ‘parents
with a son’ with the condition of having a daughter only make sense if parents are allowed to have
multiple children. Multiple instantiations from an instance of table P to an instance of table Q are
allowed when the following holds: Multiple(A, Q).

. Mutual exclusion. Some algorithms refine a single pattern into a set of derived patterns on the
basis of the value of a single nominal attribute. The subsets belonging to these patterns do not
necessarily form a partitioning of the original subset, in the sense that they may be overlapping.
However, some algorithms, notably those for inducing decision trees, do require these subsets to
be mutually exclusive. A partitioning of the original subset, by refining G from table P using an
association A from P to Q, is produced when the following holds: not(Multiple(A, Q)).

Architecture

We will be using a client/server architecture to support the multi-relational data mining framework
proposed in the previous section. The server will be responsible for storing and managing all the data, as
well as computing the primitives, which will be explained in more detail later on in this section. The client
on the other hand, will perform the actua search agorithm, which involves generating new candidates and
sending primitive calls to the server in order to test these candidates. This way, a clear separation between
handling massive datasets and performing intelligent search is achieved. Each operation can now be
optimised separately.

A lot of work has been done on implementing efficient client/server architectures for mining attribute-value
data[5, 7, 8,9, 10, 11, 13]. Most of thiswork is centred around expressing primitives in SQL in order to
use a conventional RDBMS, or extending the SQL language to support potential specific needs the data
mining algorithm may have. An aternative approach is to use a dedicated data mining server which is
optimised for the specific operations which are common in data mining. Such a data mining server will
only support the loading of data (for example from a conventional RDBMS), and a small set of primitives
for examining the data. All other operations that are common in conventional databases, such as
transaction processing, locking, roll-back and ad hoc querying, are left out for optimal performance. In
previous projects, we have worked on such a data mining architecture for attribute-value based data mining,
according to the following design principles[8, 9, 13]:

. Compute as much as possible during pre-processing. Because datasets for data mining tend to be
stable, one can benefit multiple times from prepossessing once. Specifically, the data can be
coded such that it can be stored and indexed. Rather than using the original data, one can use the
codes for indexing in cross tables etc., which is efficient for both storage and processing.

. Exploit column oriented nature of KDD algorithms. Most data mining algorithms use column
oriented operations, rather than record oriented operations, which are more common in transaction
processing. Therefore column oriented data storage and paging techniques will be attractive.

. Exploit structure of search space. Refinements of previously examined patterns will always be
supported by a subset of the original set of supporting objects. Therefore, storing intermediate
results for later use will reduce the amount of work for repeated primitives drastically.

. Exploit inherent parallelism in algorithms. Data mining agorithms are ideal candidates for
parallelisation, due to the large set of extremely similar operations that have to be performed.

Such parallelism can be on ahigh level by partitioning the search space of candidate patterns over
the available processors, or low-level by partitioning the data and performing a single primitive in
parallel.

. Optimise to low-level details. This may involve disk access, effective paging and optimisation of
the inner loops.

These design principles apply even more to the multi-relational data mining architecture. Specifically the
first principle will be of great benefit. During pre-processing, all associations will be materialised, such
that for a given record in one table, the list of corresponding records in the other table may be found in
constant time. This means that partial joins are readily available, in contrast to conventional RDBMSs,
where each query over multiple tables involves re-computing a join. Materialising all associations
effectively means trading space for time. Materialising an association effectively means creating a lean
indexing structure, rather than building the whole join between the two related tables. Only associations
between pairs of tables will be materialised, so there is no combinatorial explosion.

Primitives The following multi-relational data mining primitives will be used in order to get the necessary
counts from the database. These primitives are similar to those used in conventiona data mining [7, 8, 9,
11], with extra facilities to cope with data in multiple tables. Note that although these primitives are
represented using SQL, for better understanding, the actual architecture will provide optimised function
calls for each of these primitives. All primitives produce counts in terms of the objects of interet, i.e. in
terms of recordsin the target table:

CountSelection:

sel ect count (distinct ty primary_key)

from table list

wher e join_listand condition list;
The CountSelection primitive is the basic primitive to compute the support of a given multi-relational
pattern.

MultiRelationalHistogram:

sel ect tytarget, count (di stinct t, primary_key)

from table list

wher e join_listand condition list

group by tptarget;
The MultiRelationalHistogram primitive will produce the distribution of values for the target attribute
within the set of objects belonging to the multi-relational pattern. It can be used to compute a range of
interestingness-measures for this pattern. Note that the sum of the counts in the resulting multi-relational
histogram is equal to the result of the CountSelection primitive.

MultiRelational CrossT able:

sel ect tytarget, ti.cj, count (di stinct to. primary_key)

from table list

wher e join_listand condition list

group by to.target, t.c;
The MultiRelational CrossTable primitive will produce the distribution of pairs of values for the target
attribute and an arbitrary nominal attribute t;.c; in any of the tables. The resulting multi-relational cross
table can be used to compute a range of statistical measures to describe the dependency between these two
attributes. Note that the sum of these counts can exceed the support of the given multi-relational pattern, if
the attribute t.c; is in a table which is not the target table. This is because multiple records, with different
values for the selected attribute, may correspond to a single record in the target table, causing this record to
contribute to multiple countsin the cross table.

MultiRelational Aggr egateT able:

sel ect tptarget, m count (*)
from

(sel ect totarget, to. primary_key, m n(t.c) m

from table list

wher e join_listand condition list

group by totarget, to. primary_key)

group by tytarget, m

The MultiRelational AggregateT able primitive can be used to compute the dependency between a numeric
attribute and the target attribute. We assume that each record in the target table has multiple associated
recordsin table t;. For each of these sets of recordsin table t; we can compute the minimum for the attribute
of interest t;.cj. The primitive produces a list of counts for pairs of values for the target attribute and each
occurring minimum. The occurring minimums will be used to produce list of candidate tests on the
attribute t.c;. Here we use the fact that testing whether a set of values contains a value which is less than
some threshold, is equal to testing whether the minimum of the values is less than the threshold. An
analogous call for the maximum exists.

The MultiRelational CrossTable and MultiRelational AggregateTable primitives are used to evaluate a set of
add condition refinements. A single call of the MultiRelational CrossTable primitive for a nominal attribute
X will supply the support of the set of patterns which are the refinements of the current pattern with the
following condition: X = x, for every value x occurring in X. Similarly, a single call of the
MultiRel ational AggregateTable primitive for a numeric attribute X will supply the support of the set of
patterns which are the refinements of the current pattern with the following condition: X < x, for every
interesting threshold x occurring in X, as explained above. The support of refinements with conditions of
the type X > x can be produced by the MultiRelational AggregateTable primitive which uses max.

Example 4 The support of the pattern introduced in example 3 can be computed using the CountSelect
primitive. In order to establish what portion of these parents do and do not own a car, one can use asingle
MultiRelationalHistogram call for the attribute Car. Using the MultiRelational AggregateTable primitive,
one can examine the effects the age of a child has on the ownership of acar. The primitive will produce a
list of minimum ages within households and how frequent each minimum is, which can then be used to
establish the interestingness of various thresholds on the age of children.

| nstance

As an example of how a specific multi-relational data mining algorithm can be incorporated in the
proposed framework, we consider the Warmr a gorithm, which can be used to search for association rules
over multiplerelations[4]. The Warmr agorithm itself searches for patterns for which the support is above
a given threshold. The resulting set of frequent patterns can be used to produce rules, just as in the single
table counterpart Apriori.

For instance, during its search for interesting patterns Warmr might find the patterns P, = "al people having
acar’, P, ="dl people having a son of age at least 18’ and P; = "all people having a car and a son of age at
least 18’ to be of interest, because they have a sufficiently high support. 1f, moreover, P; (the intersection
of P; and P,) is unexpectedly large with respect to the support of P, this provides support for the claim that
most people who have a son of at least 18 also have a car. This rule is then caled a frequent multi-
relationa rule. Frequent multi-relational rules can be seen as a generalisation of association rules over a
single relation.

The algorithm can be described in our framework as follows:

F1 = {to}
I]_ =0
d=2
while Fg1 7 O
for each g in Ry
for each generic refinement R of g
if R(g) is a candidate
C = primitive(g, R)
for each refinement rin R
if C[r] = minsup
addr(g)to i
else
add r(g) to 4
d=d+1
return O; K

The algorithm is basically a level-wise search for patterns. At each leve d, frequent patterns from the
previous level (Fq,) are used to produce candidates (as in Apriori). If such a candidate has not been
considered yet, it will be validated with the database. Note how several potentia add-condition refinements
are tested by a single primitive call, using a single scan of the data. The type of primitive depends on the
type of the attribute that is considered in the refinement. Each actual refinement will be added to either the
set of frequent patterns Fy or the set of infrequent patterns | 4, depending on the support.

Conclusion

Traditional data mining algorithms work with data stored in attribute-value format, i.e. in a single table.
This limits the class of objects that can be represented, and thus the type of knowledge that can be
discovered. In this paper we have introduced a multi-relational data mining framework upon which arange
of agorithms can be based that work with datawhich is stored in relational databases multiple tables. Such
databases allow the representation of more complex and structured objects. The framework respects the
underlying relation model, and only considers patterns which adhere to this model. Thus, the potentially
huge search space of patternsis greatly reduced, which makes scaling up to large databases feasible.

Inspired by the language bias of most common ILP algorithms, we have introduced selection graphs to

describe the patterns. As each node in a graph denotes an existential quantor, there is a strong focus on the

existence of substructures as part of the objects. Rather than just testing the existence of substructures one

could aso consider richer languages of patterns that include absence of substructures and expressions over

groups of substructures. We intend to examine extensions of the framework in the following three areas.

Each of these concepts will be easily supportable by a dedicated data mining server:

* Absence Patterns may include conditions on the absence of related records: ‘all parents who do not
have a child'.

* Universal quantor Patterns may include conditions over all related records: ‘all parents who have
children that are adults’.

e Aggregates Patterns may include conditions over characteristics of groups of related records: ‘all
parents that have three children’.

References

[1] Blockeel, H., De Raedt, L. Relational knowledge discovery in databases, Proceedings of the Sixth
International Workshop on Inductive Logic Programming, Volume 314 of Lecture Notes in
Artificial Intelligence, Springer Verlag, 1996

2] Blockeel, H., De Raedt, L. Top-down induction of first order logical decision trees, Artificial
Intelligence 101 (1-2), 1998

[3] Date, C.J. An Introduction to Database Systems, Volume |, The Systems Programming Series,
Addison-Wesley, 1986

4 Dehaspe, L., and De Raedt, L. Mining association rules in multiple relations, Proceedings of the
Seventh International Workshop on Inductive Logic Programming, Volume 1297 of Lecture Notes
in Artificial Intelligence, Springer Verlag, 1997

[5] Dewhurst, N., Lavington, S. Knowledge Discovery from Client/Server Databases, Proceedings
PKDD '98, 1998

[6] Dzeroski, SlInductive Logic Programming and Knowledge Discovery in Databases, Advances in
Knowledge Discovery and Data Mining, AAAI Press, 1996

[7] Freitas, A.A., Lavington, S.HJsing SQL-primitives and parallel DB serversto speed up
knowledge discovery in large relational databases, Proceedings EMCSR '96, 1996.

[8] George, F., Knobbe, A.JA Parallel Data Mining Architecture for Massive Data Sets, To be
published, 1999

[9] Hahn, M.Info Charger Data Shest, http://www.tektonic.de/icdatash.h{rh997

[10] Holsheimer, M., Kersten, M., Mannila, H., Toivonen, AlPerspective on Databases and Data
Mining, Proceedings KDD '95, 1995

[11] John, G.H., Lent, BSPping fromthe Data Firehose, Proceedings KDD '97, 1997

[12] Knobbe A.J., Adriaans, P.VIDiscovering Foreign Key Relationsin Relational Databases,
Proceedings EMCSR '96, 1996

[13] Knobbe, A.J.Towards Scalable Industrial Implementations of ILP, ILPNet2 Seminar on ILP &
KDD, Caminha, Portugal, 1998

[14] Lavrac, N., Dzeroski, S., and Grobelnik, Mearning nonrecursive definitions of relations with
LINUS, Proceedings Fifth European Working Session on Learning, Springer, Berlin, 1991

[15] Lavrac, N., Dzeroski, Sinductive Logic Programming: Techniques and Applications. Ellis
Horwood, 1994

[16] Lindner, G., Morik, K.Coupling a relational learning algorithm with a database system,
Workshop Notes of the MLNet Familiarization Workshop on Statistics, Machine Learning and
Knowledge Discovery in Databases, 1995

[17] Mannila, H., Toivonen, HOn an algorithm for finding all interesting sentences, Proceedings
EMCSR '96, 1996

[18] Martin, L., Moal, F., Vrain, CA Relational Data Mining Tool Based on Genetic Programming,
Proceedings PKDD '98, Nantes, France, 1998

[19]

[20]

[21]

[22]

Ribeiro, J.S., Kaufman, K.A., and Kerschberg, L. Knowledge discovery from multiple databases,
Proceedings of KDD’95, 1995

Uliman, 1.D. Principles of Databases and Knowledge-Based Systems, Volume |, Computer
Science Press, 1988

Wrobel, S.An algorithm for multi-relational discovery of subgroups, Proceedings PKDD '97,
1997

Yao, |., Lin, H. Searching Multiple Databases for Interesting Complexes, Proceedings PAKDD
'97, 1997

