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Abstract

With the development of sensing and data
processing techniques, monitoring physical
systems in the field with a sensor network is
becoming a feasible option for many domains.
When analyzing data collected from the sen-
sor network, there typically exist substantial
correlations between various sensor signals.
Employing sensors of multiple types will pro-
duce a greater signal variation, but sensors
will still be sensitive to related aspects of the
measured system, that is to say there are cer-
tain dependencies. In this paper, we focus on
modeling sensors dependencies among sensor
types of a sensor network installed on a Dutch
highway bridge. This sensor network is com-
posed of three types of sensors: strain gauges,
vibration sensors, and temperature sensors.
Through linear regression, convolution, en-
velope and band pass filters, we succeeded
in detecting the dependency between strain
gauges and temperature sensors in the time
domain, and the dependency between strain
gauges and vibration sensors in the frequency
domain. To gain insight into these dependen-
cies, and how the placement and location of
sensors influences them, we further analysed
the obtained models in a secondary analysis
step. The methods presented in this paper
are demonstrated by means of an application
on a highway bridge, but we feel that, due
to their general nature, they equally apply to
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other domains amenable to sensing.

1. Introduction

With the rapidly decreasing prices for sensors, data
gathering hardware and data storage, monitoring
physical systems in the field is becoming a viable op-
tion for many domains. In fields such as civil engi-
neering, windmills and aviation, so-called Structural
Health Monitoring (SHM) systems are becoming pop-
ular to understand the actual workings of the system in
situ, as well as to monitor the system for any develop-
ing faults. More and more, sensor networks consisting
of multiple sensor types are being employed in these
environments, and large quantities of data are being
collected. New methods are required to deal with the
proper analysis and interpretation of such data collec-
tions. In this paper, we consider a case study of such a
multi-sensor network, where non-trivial data process-
ing is required to make sense of the data.

When dealing with multiple sensors measuring a phys-
ical system, each individual sensor will be sensitive to
some aspects of the system, based on the specific char-
acteristics of the type of sensor and on which part of
the system the sensor is placed. This is clearly the
case for sensors of different types (such as vibration
and temperature sensors), but also for identical sen-
sors attached differently to the system. If two sensors
are measuring in each others vicinity, they will likely
show some dependency, but in most cases, this depen-
dency will be non-trivial, depending on the location,
the orientation and the attachment. As an example,
consider an SHM-system employed on an aircraft. In
order to measure stresses on a wing, and potential
metal fatigue on the wing attachment, strain gauges
are fitted to the wing attachment. During high-g-force
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manoeuvres, the strain gauges will measure high val-
ues of strain on the attachment. Other sensors might
be placed at the tip of the wing, to measure vibra-
tions caused by turbulence for example. These vibra-
tion sensors however, will not be sensitive to sustained
bending of the wing, as the sensor simply moves along
with the wing, and is only sensitive to rapid changes
in the location of the wing. As such, strain gauges
are sensitive to different aspects of the dynamics than
vibration sensors, although some overlap exists in the
physical phenomena captured by either type.

In this paper, we provide some examples of modeling
the dependencies between (pairs of) sensors, specifi-
cally where multiple sensor types are involved. We
will demonstrate the methods on data collected at a
Dutch highway bridge within the InfraWatch project
(Knobbe et al., 2010; Vespier et al., 2011; Miao et al.,
2013). The bridge in question is continually being
monitored by a collection of sensors of three differ-
ent types: strain gauges, vibration sensors, and tem-
perature sensors, all sampling at 100 Hz. One of the
main challenges here is to understand the specific fo-
cus of each sensor type and to model any relationships
across types. Having such a model may help, for in-
stance, to remove certain phenomena measured by one
sensor type from the signal of another sensor type.
Specifically, we will consider the effect of temperature
changes on the strain measurements at various loca-
tions on the bridge. As such, we can correct for this
temperature effect.

Modeling dependencies between sensors also helps to
remove redundancies in the data. Being able to in-
fer the measurements of a particular sensor from the
remaining sensor may suggest a smaller, and thus
cheaper monitoring set-up. Finally, any modeling over
the collection of sensors is beneficial for tracking the
health of the bridge over longer periods. Changes in
the value of a single sensor will often indicate transient
effects, such as traffic or weather, but changes in the
models of the bridge data indicate structural changes
to the actual bridge, warranting further investigation.

A further issue we will be investigating is the effect
that location and placement of sensors has on their
usefulness within the network. For example, if we wish
to understand the effect of temperature on strain mea-
surements, it will be relevant to know where and how
these two parameters are being measured. By inves-
tigating the dependencies between all pairs of sensors
from two types (in this case strain and temperature),
we hope to discover practical guidelines for the opti-
mal placement of sensors. In Section 6, we perform a
secondary analysis step based on Subgroup Discovery

to find key characteristics of sensors in terms of their
type, location, mode of attachment and orientation.

2. Preliminaries

In the InfraWatch project, a sensor network with 145
sensors is employed. These sensors are placed along
three cross-sections of a single span of the bridge. Each
of them is either embedded in the concrete, or attached
to the outside of the deck and girders. To measure
the strain in different directions on the bridge, we uti-
lize sensors of different types: vibration sensors mea-
sure vertical motion of the bridge, and strain sensors
measure horizontal strain caused by deflection of the
bridge. In the latter case, we measure strain along
both the X-axis and Y -axis. To measure the temper-
ature of different parts of the bridge, we also employ
multiple temperature sensors. To formalize this place-
ment, we define each sensor as follows:

Definition 1 (Sensor) A sensor is a tuple
(t, x, y, e, o), where t ∈ {St, V i, Te} indicates the
sensor type (strain, vibration, and temperature,
respectively), x and y are its coordinates on the
bridge, e ∈ {embed, attach} indicates whether the
sensor is embedded or attached to the concrete, and
o ∈ {X-axis, Y -axis} indicates the orientation of the
sensor.

In the remainder of this paper, we will make sub-
stantial use of linear correlations between two signals.
Specifically, we will use the (Pearsons’s) correlation co-
efficient as a measure for how related two signals are,
modulo a linear transformation between the two. In
many cases, the challenging part is the non-linear op-
erations that will have to be performed to the signals,
in order to make them congruent. What remains is a
simple linear transformation in order to translate the
one scale (for example degrees Celsius) to another (for
example strain in µm/m). Using the correlation coef-
ficient allows us to measure the dependency between
two features in a manner that is independent of the
scale in which a sensor happens to measure.

3. Strain & Temperature

In this section, we study the relationship between two
types of sensor: strain and temperature. The sen-
sor network features a total of 91 strain sensors, 44
of which are embedded, and 47 are attached. Of the
20 temperature sensors, one half is embedded in the
surface of the deck, and the other half is attached to
the underside of the deck.

Fig. 1 , the absolute correlation coefficients between
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Figure 1. Correlation matrices for St-Te (left), St-Vi (middle) and Vi-Te (right). The numbers on the axes indicate the
sensor number.The colorbar value stands for the absolute value of correlation coefficients.

strain and temperature vary from 0 to 0.97. For these
sensor pairs with high correlation coefficients, we can
simply employ a linear model that assumes the mea-
sured strain is directly influenced by the temperature
of one of the temperature sensors:

S = a · T + b

In this model, the coefficients a and b translate be-
tween the temperature scale (in Celsius) and the
micro-strain scale (in µm/m). The blue line in Fig.
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Figure 2. The linear (blue) and exponential decay model
(red) between strain and temperature.

2 shows the effect of this model applied to a pair of
strain and temperature sensor time series that are only
moderately related, with a = −3.288 and b = 27.547
obtained through linear regression over a longer pe-
riod of time than displayed here. The correlation co-
efficient for this example is r = 0.776, which indicates
that the selected pair of sensors are moderately cor-
related. However, when considering the time series in
more detail, one can note that there is a dependency
of the strain signal on the temperature measurements,
but this relation is non-trivial: it involves a degree

of delay: the upward and downward movement of the
signal appear to be shifted by several hours.

The linear model fails to capture the complete effect
of temperature on the strain, because the temperature
sensor does not actually measure the bridge tempera-
ture, but rather the outside temperature. The temper-
ature of the bridge is of course mostly influenced by the
outside temperature, but this influence is spread over
time, and the bridge temperature will follow changes of
outside temperature with a delay. The amount of de-
lay depends on the size and material of the structure,
with larger structures (such as the bridge in question)
being less sensitive to sudden changes of outside tem-
perature. In other words, a large concrete bridge has
a large capacity to store heat, which is mirrored in a
slow response of the strain signal.

In the systems analysis field, systems with a capac-
ity are often modeled as a Linear Time-Invariant sys-
tem (Hespanha, 2009). Time-invariant indicates that
the response of the system does not change over time,
which is a reasonable assumption for a bridge (if subtle
deterioration of the structure is ignored). LTI systems
are linear because their ‘output’ is a linear combination
of the ‘inputs’. In terms of the bridge, the tempera-
ture of the bridge is modeled as a linear combination of
the outside temperature over a certain period of time
(typically the recent temperature history):

Tbridge(t) =

∞∑
m=0

h(m)T (t−m)

where Tbridge(t) is the internal temperature and h is
an impulse response (to be defined below). Note that
this is a special case of convolution, a concept that
has been extensively studied in signal processing and
analysis (Stranneby & Walker, 2004):

y(t) = h ∗ x(t) =

∞∑
m=−∞

h(m)x(t−m)
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Figure 3. Strain and Vibration signal in the time and frequency domain.

Of the many impulse response functions h, which
include for example the well-known moving average
operation, we decide to model the delayed effect of
the outside temperature using the exponential decay
function he(m) = e−λm (for m ≥ 0). In this function,
λ is the decay factor, which determines how quickly
the effect of past values reduces with time. Note that
the resulting equation

S = a · he ∗ T + b, where he(m) = e−λm (1)

is the solution to a linear differential equation that
is known as Newton’s law of cooling, which states that
the change in temperature of the bridge is proportional
to the difference between the temperature of the bridge
and its environment:

dTbridge
dt

= −r · (Tbridge(t)− T (t))

This is a somewhat simplified representation of real-
ity, in that it assumes that the systems consists of
two ‘lumps’, the bridge and the environment, and that
within each lump the distribution of heat is instanta-
neous. Although in reality this is clearly not the case,
it turns out that this model performs fairly well.

For a given pair of sensors and the associated data,
we will have to choose optimal values for a, b and
λ. It turns out that λ behaves very decently, with
only a single optimum for given a and b, such that
simple optimisation with a hill-climber will produce
the desired result. For Equation 1, we obtain a fit-
ted model for the selected sensor pair shown as the
red line in Fig. 2, which clearly demonstrates that
the exponential decay model has removed the appar-
ent delay in the data. The fitted coefficients were

a = −12.147, b = 30.463, and λ = 3 · 10−5, with a
correlation coefficient r = 0.867. Considering every
possible pair of sensors from St and Te, we find that
the correlation coefficients of 47.4% of sensor pairs are
improved by the exponential decay model. Indeed, the
successful modeling of the dependency for a given pair
of sensors still depends on the location and placement
of either sensor. In Section 6 we look into the ques-
tion of finding suitable pairs of sensors in more detail,
when we apply Subgroup Discovery to the modeling of
St-Te sensor pairs.

4. Strain & Vibration

Our sensor network contains 34 vibration sensors, 15
of which are attached to the bridge deck, while the re-
maining 19 sensors are attached to the bridge girders.
As mentioned in Section 2, both vibration and strain
sensors are used to measure the dynamic stresses act-
ing on the bridge. In theory, there should thus be
some degree of correlation. However, we failed to de-
tect a strong linear dependency between any pair. As
illustrated in Fig. 1 (middle), the correlations between
most sensor pairs are quite weak, the highest one for
this data being 0.1557. To demonstrate what types of
modelling can be done for these two types of sensors,
we selected one pair of sensors with a moderate corre-
lation coefficient, as shown in the time domain in Fig.
3 (left). The graphs show that the vibration sensor is
a symmetric signal, while the strain sensor time series
is not. However, the peaks in both occur consistently,
which indicates that they are related. Using a sim-
ple correlation, this effect is hidden by the symmetric
nature of the vibration signal.
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Figure 4. The correlation matrix for St-Vi after applying a
band-pass filter in the frequence domain.

Fig. 3, which features the spectra obtained for the
two signals by means of a Discrete Fourier Transform
(Stranneby & Walker, 2004), shows that despite a lack
of a direct relation in the time domain, the signals are
actually fairly similar in parts of the spectrum, notably
where frequencies above 1 Hz are concerned. Note
the big peak around 2.8 Hz in both spectra. In fact,
what is missing in the vibration spectrum are the lower
frequencies, which correspond to slower bridge move-
ments. In other words, the vibration sensors are not
sensitive to gradual changes in the deflection of the
bridge, as the sensors themselves simply move along
with the bridge. The strain gauges, on the other hand,
are sensitive even to the slowest changes in bridge de-
flection. However, both sensors measure shaking of the
bridge (frequencies above 1 Hz) in a similar fashion.

Based on these observations, an obvious way to relate
St to Vi is to focus on a fairly specific range of frequen-
cies. In our experiments, we have applied a band-pass
filter to remove all components of the signal outside
the range 2.0− 3.2 Hz. The linear model between the
strain and vibration time series then becomes:

BPF2−3.2(S) = a ·BPF2−3.2(V ) + b

in which BPF stands for the band-pass filter opera-
tion. After applying the band-pass filter operation to
both St and Vi, the correlation coefficient improves
from 0.10 to 0.94.

The model we achieved through the band-pass filter
operation works well for a small selection of sensor
pairs. In Fig. 4, information is displayed on which
sensor pairs specifically gain from this operation. Note
that some strain gauges correspond well to most of the
vibration sensors (dark columns in the matrix). These
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Figure 5. The dependency between modes and tempera-
ture.

sensors are primarily located on the right side of the
bridge. The few exceptions (St78, St79 and St83) are
located on the girder entirely on the other side of the
bridge. We look into such observations in more detail
in the coming secondary analysis section (Section 6).

5. Vibration & Temperature

As mentioned in the previous section, the vibration
spectrum shows little activity in the range below 1
Hz, which happens to be where all of the temperature
changes occur (for example due to the daily difference
between day and night). For this reason, there are no
significant dependencies between the sensors from Vi
and Te, shown as Fig. 1 on the right. However, the
vibration of the bridge does depend on the tempera-
ture. It is well known that bridges tend to oscillate
at specific frequencies, and that these frequencies are
determined by the stiffness of the structure, which in
turn is influenced by changes in the temperature of
the material. In a simplified model of a span of the
bridge, the natural frequency of the span is computed
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as follows:

fn =
1

2π

√
k

m

In this equation, m refers to the mass of the bridge
(including the possible load on the bridge), and k is
a stiffness coefficient that depends on several factors
such as material, humidity, corrosion, etc., but also
on temperature. Note that an increasing temperature
leads to a decreasing stiffness k, and hence a decrease
in frequency, such that we expect a negative relation-
ship between Vi and Te sensors.

The effect of temperature on natural frequencies is
widely studied (Song & Dyke, 2006; Xia et al., 2006).
After external excitation, for example traffic or wind,
a bridge can vibrate in different modes (Reynolds &
Pavic, 2001). Each mode stands for one way of vi-
bration, which can be vertical, horizontal, torsional or
more complicated combinations thereof, and there is
one natural frequency corresponding to each. To iden-
tify these modes, we use a peak selection method in the
spectrum of the vibration sensor (Peeters & De Roeck,
2000). As shown in Fig. 3, we can detect several
peaks in the spectrum, each of which is assumed to
correspond to a mode. We then consider each mode
individually, and look for dependencies between the
temperature and the frequency.

In order to consider a substantial range of tempera-
tures, we extracted data from over 45 days, with tem-
peratures between 0 and 12 ◦C. In order to minimize
the effect of traffic on m, we selected one hour from
each day from 3:00 AM to 4:00 AM. Another motiva-
tion for this time-period is the relative stable temper-
ature of both the environment and the bridge. From
this hour of data, a spectrum was computed, along
with the corresponding modes, as well as the average
temperature during this period. Surprisingly, and con-
trary to many publications (Peeters & De Roeck, 2000;
Xia et al., 2006; Liu & Dewolf, 2007; Xia et al., 2011),
we find that most modes in the lower ranges of the
spectrum (for example the prime one around 2.8 Hz)
are not affected by temperature (see Fig. 5 left), at
least not in the 12 degrees range available to us. The
only mode clearly depending on temperature is around
18.6 Hz, as shown in Fig. 5 right.

6. Analysis of Sensor Properties

As mentioned at the end of Section 3 and 4, we can
accurately model some of the strain signals using the
temperature signals, and correlate some vibration sen-
sors with strain sensors. However, the models we ob-
tained are not universal for every pair of sensors. To
further look into why some sensor pairs work well and

others not, we analysed them in a secondary analysis
step, where we investigate the influence of various sen-
sor properties such as their location and orientation.
The term secondary analysis refers to the fact that
we are taking the combined set of findings from the
previous analysis (the search for sensor dependencies),
and treating them as a new data mining task, which
is aimed at finding properties of the sensor pairs that
help understand why some pairs are easier to model
than others. The term meta-learning could also apply
to this activity.

Our method of choice for this analysis is Subgroup
Discovery (SD), which is a descriptive pattern min-
ing technique that aims to outline specific subsets of
the data that show a significant deviation of the tar-
get, compared to the entire dataset. Our target in
this case is the quality of the individual models for
sensor pairs (expressed in terms of correlation coeffi-
cient), which makes this a regression task. As qual-
ity measure for subgroups with a regression target, we
use the so-called (standardized) z-score, which essen-
tially measures how many standard deviations a sub-
group is away from the mean of the entire dataset (see
(Pieters et al., 2010) for an overview of quality mea-
sures for regression SD). The software we used to con-
duct these experiment is called Cortana1, which is a
generic toolbox for Subgroup Discovery tasks, includ-
ing the regression setting that is required here (Meeng
& Knobbe, 2011). Any alternative tool for discover-
ing patterns in numeric/nominal data in a regression
setting, such as regression trees, would have worked
equally well.

Table 1 shows the structure of our data obtained after
the initial modeling of sensor pairs. We represent each
sensor pair and their properties, including the correla-
tion of the best model, in one row. In the St-Te model
we have 91·20 = 1820 rows, and 91·34 = 3094 rows for
the St-Vi model. The sensor locations are represented
using x and y-coordinates, but in order to allow the
SD algorithm to also discover more high-level, inter-
pretable properties, we also introduced several inter-
vals in both dimensions (such as girder and deck for
the y-axis). Additionally, we provided the orientation
and type of embedding as nominal attributes.

In our SD run, we search for interesting subgroups with
descriptions consisting of conditions on one or more
attributes. Although very specific descriptions can be
mined, it turns out that fairly simple descriptions are
the most informative, so we mine for subgroups of at

1It can be downloaded from datamin-
ing.liacs.nl/cortana.html, and is also available as a
plugin for the KNIME package.
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Table 1. Example of the data that was used in the secondary analysis.

Strain Temperature
sensor x y embed. orient. lane layer struct. sensor x y embed. lane layer struct. corr.
St1 14 0 attach X-axis right girder girder Te1 13 7 embed right top deck 0.139
St1 14 0 attach X-axis right girder girder Te2 13 5 attach right bottom deck 0.024
St1 14 0 attach X-axis right girder girder Te3 9 7 embed middle top deck 0.068
...
St2 14 2 attach X-axis right girder girder Te1 13 7 embed right top deck 0.277
St2 14 2 attach X-axis right girder girder Te2 13 5 attach right bottom deck 0.472
...

Table 2. The d ≤ 2 results for the St-Te models (µ0 = 0.533).

Subgroup description Coverage % z-score µSi

St vertical = inside deck & St horizontal ≤ 7 11.0 18.2 0.89
St vertical = inside deck & St orientation = Y -axis 9.9 17.8 0.90
St vertical = inside deck 16.5 16.1 0.79
St vertical = inside deck & Te horizontal ≤ 9 13.2 15.9 0.82
St vertical = inside deck & Te horizontal ≥ 5 13.2 14.1 0.79
St vertical = inside deck & Te embedding = attach 8.5 12.2 0.81
St vertical = inside deck & Te horizontal ≤ 5 6.6 11.2 0.82
St vertical = inside deck & Te embedding = embed 8.2 10.6 0.77
St embedding = embed 47.3 10.3 0.63

most two conditions (d ≤ 2). The algorithm searches
for high-quality subgroups using a beam search with
beam width w = 100 (Meeng & Knobbe, 2011). A
z-score-ranked list of subgroups is returned, of which
we report the top-ranking results. Note that we filter
the final ranking by removing logical redundant sub-
groups. A minimum subgroup size of 2 was used.

St-Te models The secondary analysis of the strain
and temperature sensors takes the absolute correla-
tion value of each sensor pair as the primary target.
The first 9 subgroups (sets of pairs of St-Te sensors)
are shown in Table 2. The average correlation over
the entire set of pairs is µ0 = 0.533. The columns
contain the subgroup description, the percentage of
sensor pairs within the subgroup (i.e. the fraction of
the database covered), the z-score, and the average
correlation with the subgroup, respectively.

This table shows 2 subgroups of depth one and 7 sub-
groups of depth two. First, we note that the quality
of the St-Te models seems to rely mostly on proper-
ties of the strain sensors, rather than the temperature
sensors. Apparently, Te sensors provide fairly stable
results, whereas for the St sensors, it really depends on
the location whether they can be use reliably. Specifi-
cally, sensors inside the deck, oriented horizontally on
the left side of the bridge2, appear to work well. Note

2The bridge was under construction during this period,
and was not being use symmetrically.

that such observations are highly useful for the design
of future sensor networks, as it provides guidelines to
the effective placement of a small collection of sensors.
Although subgroups 4 to 8 provide some information
as to the placement of Te sensors, these subgroups are
not radically different from ‘St vertical = inside deck’,
and have a slightly lower quality (although sometimes
higher µSi).

St-Vi models Table 3 presents the top-9 subgroups
for the strain and vibration models. The results
present a much more balanced picture, with both St
and Vi properties being crucial for a reliable model.
Clearly, the location of sensors at the girders provides
the best results, an observation that is corroborated by
civil engineering experts in the project. Note that ei-
ther side of the bridge is much more useful for St place-
ment, compared to the middle of the bridge. We also
identify several individual strain sensors (St1, St11,
St83) located on both sides of the bridge that play a
useful role in many models they feature in. Note that
these selected sensors correspond to the three darkest
columns in the correlation matrix in Fig. 1 (right).

7. Conclusion and future work

We have demonstrated the use of a number of key
data mining and signal processing techniques to model
dependencies among multiple sensor types. We have
built a linear model to correlate strain and tempera-
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Table 3. The d ≤ 2 results for the St-Vi models (µ0 = 0.139).

Subgroup description Coverage % z-score µSi

St vertical = girder 17.4 31.3 0.36
Vi vertical = girder & St vertical= girder 10.2 28.0 0.40
St vertical = girder & St horizontal = right 6.5 24.8 0.43
St embedding = attach & St orientation = X-axis 38.0 17.7 0.21
St vertical = girder & Vi vertical = under deck 7.2 15.3 0.31
sensor = St1 & Vi vertical = girder 0.6 12.8 0.62
St vertical = girder & St horizontal = left 6.5 12.2 0.28
sensor = St83 & Vi vertical = girder 0.6 11.4 0.56
sensor = St11 & Vi horizontal = right 0.4 11.4 0.68

ture readings, and improved this model through con-
volution with an exponential response function. In
the frequency domain, we used band-pass filters to
detect the correlated spectra between strain and vi-
bration sensor time series. For modeling dependen-
cies between vibration and temperature sensor time
series, the modes of the spectrum were identified. We
note that most low frequency modes are affected lit-
tle by temperature changes. Finally, we conducted
secondary analysis of the models obtained in Section 3
and 4, and extracted subgroups to explain the effects of
sensor placement. The extracted rules can be used as
guidelines for designing more (cost-)effective networks
on future Structural Health Monitoring installations.
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