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Abstract Pattern discovery algorithms typically produce many interesting 
patterns. In most cases, patterns are reported based on their individual merits, 
and little attention is given to the interestingness of a pattern in the context of 
other patterns reported. In this paper, we propose filtering the returned set of 
patterns based on a number of quality measures for pattern sets. We refer to a 
small subset of patterns that optimises such a measure as a pattern team. A 
number of quality measures, both supervised and unsupervised, is proposed. 
We analyse to what extent each of the measures captures a number of 
‘intuitions’ users may have concerning effective and informative pattern teams. 
Such intuitions involve qualities such as independence of patterns, low overlap, 
and combined predictiveness. 

1 Introduction 

Over the last few years, there has been an increasing interest in pattern discovery 
algorithms. In this branch of Data Mining, the emphasis lies on discovering a 
collection of local patterns that satisfy a number of inductive constraints provided by 
the user, rather than on the induction of a single global model of the data. Typically, a 
pattern represents some subgroup of the data, and patterns are selected on the basis of 
the support of the subgroup and one or more constraints on interestingness measures, 
for example based on the correlation with a target concept. Common examples of 
such Data Mining settings are frequent pattern discovery (itemsets, trees, graphs, etc.) 
[11], association rule mining [12] and subgroup discovery [1, 3, 9, 10, 12]. In most 
cases, patterns are reported based on their individual merits, and little attention is 
given to the interestingness of a pattern in the context of other patterns reported. As a 
result, the outcome of a pattern discovery exercise is often a large collection of 
patterns, with high levels of redundancy, that is hard to inspect manually. It is our aim 
in this paper to improve the effectiveness of pattern discovery algorithms by 
considering the quality of patterns in the context of other patterns reported. 

Let us consider a busy end-user, who has only very limited time to inspect the 
outcome of a pattern discovery exercise. If only a few patterns can be considered, a 
small yet effective set of patterns needs to be selected. Having already seen one or 
more patterns, the next pattern presented needs to both perform well, and be 
substantially different from the first patterns. If the next pattern effectively covers 
almost the same set of individuals as any combination of the previous ones (even 
though syntactically it might be completely different), it provides little new 
information. We present a method of selecting a small subset of patterns – a pattern 



team – that optimises some given quality measure for sets of patterns. In this paper we 
consider four candidate quality measures that promote different desirable properties 
of sets of patterns. Depending on the (implicit) expectations of the end-user, different 
methods of pattern selection can thus be applied, resulting in different pattern teams. 

The quality measures presented are inspired by a number of intuitions end-users 
typically have about pattern mining results. We use the following list of intuitions, 
and test to what extent the four measures satisfy these intuitions: 

I1 No two patterns should cover (approximately) the same set of examples. 
I2 No pattern should cover (approximately) the complement of another pattern. 
I3 No pattern should cover (approximately) a logical combination of two or 

more other patterns. 
I4 Patterns should be (approximately) mutually exclusive. 
I5 When using patterns as input to a classifier, the pattern set should lead to the 

best performing classifier. 
I6 Patterns should lie on the convex hull of all patterns in ROC-space. 
Clearly, these six intuitions cannot all hold at the same time. In fact, some 

intuitions are to some extent competing (e.g. I2 and I4). One should think of these 
intuitions as descriptions of the kind of expectations an end-user may have about the 
set of patterns returned. Typically, we will only be interested in satisfying one, or a 
few of these intuitions. 

An important characteristic of the four quality measures presented is that they are 
syntax-independent (although one can envisage more syntax-oriented measures). This 
means that pattern sets are solely judged on the subgroups of individuals covered by 
each pattern, and the potential overlap or independence of these subgroups. As a 
result, our methodology applies to any mining paradigm where patterns represent 
subgroups. This includes complex domains such as structured and multi-relational 
domains, where rich pattern languages make purely syntactical comparisons of 
patterns difficult or expensive. 

An extended version of this paper can be found in [5]. This version contains more 
examples, experiments and extended descriptions of related work. 

2 Pattern Team Discovery 

The process of filtering patterns will generally be preceded by a pattern discovery 
phase. The pattern discovery task can be defined as follows: given a pattern collection 
P, a set of interestingness measures φ1, …, φl , φi : P → [0, 1], and a set of threshold 
values σ1, …, σl , σi ∈ [0, 1], find all patterns p ∈ P such that ∀i : φi(p) ≥ σi. In an 
alternative setting, the top k patterns with respect to one of the interestingness 
measures is returned.  

In both settings, the outcome will typically be a large set of interesting patterns Pφ 
with considerable levels of redundancy. In this paper, we therefore propose a second 
phase, consisting of a pattern team discovery task: given a set of interesting patterns 
Pφ , and a quality measure for pattern sets Φ : 2P → R, find a pattern set P ⊆ Pφ of size 
k such that Φ(P) ≥ Φ(Q) for all Q ⊆ Pφ  of size k.  

In this case, we are interested in a single pattern team of specified size k, but other 
variants of this task can be imagined. For example, one could query for all pattern 
teams of size k, or for an optimal pattern team regardless of its size. Alternatively, one 



can imagine a discovery task that returns all (or the top k) pattern sets P such that their 
quality exceeds some threshold: Φ(P) ≥ Σ. This setting however defies the purpose of 
pattern filtering, as potentially many pattern sets will be returned. 

Finding a pattern team of size k for any given pattern set quality measure Φ 

potentially involves the consideration of ( )n
k  subsets of Pφ , where n = | Pφ |. In fact,  

Mielikäinen et al. [7] show that the general pattern team discovery problem is NP-
hard by relating it to the set-covering problem, making it infeasible for all but small 
values of k. Fortunately, for specific quality measures, it is possible to find optimal 
pattern sets efficiently, or to find approximations that can be shown to perform 
reasonably well [7]. In [4], we provide some example algorithms for joint entropy, 
one of the quality measures considered in this paper. The thorough treatment of 
efficient implementations of pattern team discovery is outside the scope of this paper. 

3 Quality Measures 

In this section, we present four quality measures for pattern sets. Two of the four 
measures work in an unsupervised fashion: they consider properties of the subgroups 
covered (specifically independence and mutual exclusiveness), and ignore the 
potential predictive qualities of a pattern. Note that these two measures work on 
pattern sets discovered by algorithms working in either supervised or unsupervised 
fashion. Conversely, we could create a pattern team using one of the two supervised 
quality measures on patterns discovered in unsupervised mode (e.g. frequent 
patterns). We thus have a choice for supervised or unsupervised both for the initial 
pattern discovery phase, as well as the subsequent pattern filtering phase. 

The following basic definitions will allow us to define the four quality measures 
for pattern sets formally. We assume that our database d is a bag of labelled objects i 
∈ D, referred to as individuals, taken from a domain D. Furthermore there is a 
function l: d → R that specifies the label of an individual. If the labels just have 
values 0 and 1, we interpret the individuals as belonging to the negative (F) and 
positive (T) classes, respectively. Alternatively, we treat the mining task as a 
regression problem. We refer to the size of the database as N = |d|. 

We assume nothing about the syntax of the pattern language, and treat a pattern 
simply as a function p: D → {0, 1}. We will say that a pattern p covers an individual i 
iff p(i) = 1. A subgroup S(d, p) implied by a pattern is now simply the set of 
individuals i ∈ d that are covered by p: S(d, p) = {i ∈ d �p(i) = 1}. For brevity we will 
omit the d from now on. s(p) = |S(p)| refers to the size of the subgroup implied by p. 
Furthermore, we will use expressions like l(i) = 1 to denote patterns related to the 
label of individuals, such that S(l(i) = 1) for example denotes the set of positive cases. 

When talking about sets of patterns P = {p1, …, pk} of size k, an individual may be 
covered by some patterns in P and not by others. In order to represent such 
contingencies, we introduce codes c ∈ {0, 1}k. The subgroup implied by a given 
pattern set P and a code c is defined by S(P, c) = {i ∈ d �p1(i) = c1, …, pk(i) = ck}. s(P, 
c) = |S(P, c)| is the size of the subgroup implied by P and c. 

Joint Entropy The first quality measure for pattern teams is based on our work on 
maximally informative k-itemsets (miki’s) [4]. In essence, we treat each pattern in Pφ 



as a binary feature (an item), and for each pattern set P ⊆ Pφ of size k, compute the 
joint entropy [4] of the features in P. A miki is then simply the itemset (pattern set) 
that optimises this joint entropy. Our first quality measure Joint Entropy H(P) is 
hence defined as: 
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The entropy is a measure for the uniformity of the distribution of individuals over 
the different contingencies. A uniform distribution is achieved if for all patterns s(p) = 
N / 2, and all patterns are independent. A pattern team that optimises the joint entropy 
will hence optimise the power to distinguish between individuals. Note that H is 
unsupervised, as well as insensitive to replacing one or more patterns with their 
complement [4]. Patterns are merely used to distinguish two complementary sets of 
individuals.  

Exclusive Coverage The second quality measure is inspired by intuition I4: 
pattern sets that reduce the amount of overlap between patterns are favoured. Because 
overlap is less likely with patterns of low support, we will also have to promote the 
support of individual patterns. The Exclusive Coverage EC(P) quality measure counts 
the coverage that is exclusive for each pattern, and is defined as follows: 
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Note that this measure counts the coverage of subgroups that correspond to the 
codes that contain only a single 1.  

DTM Accuracy Unlike the first two measures, the third quality measure is 
supervised: it determines the quality of a pattern team on the basis of how well a 
simple classifier is able to predict the label of individuals, given the patterns as feature 
set. Finding the optimal pattern team hence amounts to selecting a pattern set by 
means of a wrapper approach [2].  

The classifier of choice is the Decision Table Majority classifier [6, 8], also 
known as a simple decision table. The idea behind this classifier is to build from the 
pattern set a contingency table for each possible code, and compute the relative 
frequency of positive cases for each contingency. For contingencies that do not appear 
in the database, the relative frequency of positive cases is based on that of the whole 
database (i.e. the prior). An individual is now classified by computing its code, and 
returning the majority class within the associated subgroup. This simple approach 
works surprisingly well, under two conditions: the features (i.e. patterns) have a low 
cardinality, and the decision table should be based on a relatively small number of 
features selected from a larger set by means of a wrapper [6]. These conditions clearly 
hold for our application. The following definition captures the workings of a DTM 
classifier. The function f computes a conditional probability estimate for l(i) = 1 for a 
code c, given a set of patterns P: 
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The DTM Accuracy Acc(P) quality measure uses the DTM classifier to determine 
how predictive a pattern set is by computing the accuracy of the classifier by means of 
cross-validation. This will reduce the risk of choosing a pattern set that over-fits. As a 
more efficient alternative, one might consider the purity (the accuracy based on in-
sample testing) of the DTM classifier as a quality measure. Informal experimentation 
has shown that results thus obtained are very close to the cross-validated accuracy. 

It is important to note that instead of a DTM classifier, any classifier can be 
applied. Furthermore, obtaining a good classifier is not our primary goal: we are 
merely using a classifier in order to obtain a well-performing pattern team.  

Area Under Curve The Area Under Curve AUC(P) quality measure computes the 
area of the convex hull of the patterns in P in ROC-space [1]. The quality measure is 
computed by plotting the patterns in P in ROC-space, along with the points (0, 0), (1, 
0), (1, 1), and computing the area of the convex hull of these k + 3 points. 

4 Intuitions and Quality Measures 

The different quality measures introduced in the previous section capture different 
aspects of pattern sets. In this section, we examine how these measures fit the 
intuitions introduced in Section 1. Furthermore, we analyse the correlation between 
measures, and hence to what extent measures capture similar qualities of pattern sets. 
As the quality measures are chosen such that they capture at least one intuition 
perfectly, we can use the correlations between measures to understand how they map 
to intuitions. If a certain measure is uncorrelated with another measure that is 
designed to fit a particular intuition, then this first measure cannot be useful for said 
intuition. The following experiment will support our discussion of quality measures. 

 
Experiment The database under consideration is the multi-relational database 

Mutagenesis [5]. It contains structured descriptions of 188 molecules that fall in two 
classes: mutagenic (66.5%) and non-mutagenic. Although multiple versions of the 
database exist, with various amounts of information about the molecular structure and 
properties of the molecules and atoms, we will use a version that contains the basic 
molecular structure, as well as two numeric attributes on the molecule level (Lumo 
and LogP). Additionally we have added two aggregated attributes on the molecule 
level, describing the number of atoms and the number of distinct elements. Hence 
there is a certain level of redundancy in the database, which may lead to different 
patterns capturing more or less similar properties of the molecules. Furthermore, the 
availability of multiple numeric attributes allows for a large range of decision 
boundaries, which should lead to redundancy in the patterns, as well as moderate 
variations of patterns. 



Predictive patterns were discovered using Safarii in supervised mode. Subgroups 
were discovered using the absolute value of the novelty (a.k.a. weighted relative 
accuracy) interestingness measure, and a minimum support threshold of 5%. 
Relatively moderate search conditions were used in order to arrive at a manageable 
result set. The outcome is a collection of 51 multi-relational patterns describing 
subgroups that show a substantial deviation in mutagenicity, either positive or 
negative. The original database, as well as the propositionalised version of the 51 
binary features can be obtained from the authors.  

These results lead to the following conclusions. The results are also summarised in 
Figure 1. Each cell describes how useful a particular measure is for a given intuition. 
If a particular quality measure was defined with a specific intuition in mind, the 
corresponding cell is coloured grey. For supporting data, see [5]. 

 
Joint Entropy The quality measure H clearly captures Intuitions I1 to I3 [4]. If 

two patterns cover almost the same subgroup, having both of them in the pattern team 
will not give a significant improvement in uniformity of the distribution over just 
having one of the two (I1), and hence H will favour pattern sets with more diversity 
among the patterns. The same holds for patterns that follow directly from multiple 
other patterns (I3). As H is insensitive to replacement with complementary patterns, 
I2 applies. H and EC turn out to be uncorrelated, and hence a pattern team optimised 
with respect to H can not be expected to satisfy I4.  

Surprisingly, patterns teams optimised for H perform reasonably well for 
classification, despite the unsupervised nature of this measure. Therefore, we can say 
that H captures I5 to a reasonable degree. H and AUC are uncorrelated, and hence H 
is not a good measure for finding pattern sets on the convex hull in ROC space (I6).  

Exclusive Coverage The measure EC penalises overlap, and thus having two 
similar patterns is unlikely. EC therefore satisfies to some extent I1, with the 
exception of patterns with low support (and thus low penalty) that sometimes appear 
in copies. I2 and I3 however are not satisfied, because complements and logical 
redundancy are promoted. Clearly I4 is satisfied. The performance of a DTM 
classifier is unrelated to the patterns being mutually exclusive: EC does not satisfy I5. 
The same holds for I6. 

DTM Accuracy The measure Acc correlates quite well with H, and hence 
captures I1 to I3 moderately well. This should be no surprise, as redundancy in the 
pattern set cannot benefit the classification score. It turns out that Acc in general does 
not provide mutually exclusive pattern sets (I4). Clearly I5 is satisfied. The 
experiment shows a very slight correlation between the classification score and the 
area under curve (I6). At least, poorly performing pattern sets consist of patterns 
below the convex hull in ROC space. A higher correlation might be expected if only 
positive patterns would have been produced in the initial discovery phase, as many 
predictive patterns now appear below the diagonal. 

Area Under Curve As follows from the discussion above, the AUC measure is 
really only useful for I6. A pattern team consisting of patterns on the convex hull 
apparently is not very useful as input to a classifier. The only purpose of such a 
pattern team would therefore be to provide patterns that are optimal individually, 
rather than as a team.  

 



 Joint Entropy Exclusive Coverage DTM Accuracy AUC 
Intuition 1 very high moderate high  
Intuition 2 very high  high  
Intuition 3 very high  high  
Intuition 4  very high   
Intuition 5 high   very high low 
Intuition 6   low very high 

Figure 1. Informal analysis of how well the different quality measures fit the 
six intuitions.  

5 Related Work 

The domain of feature selection [2, 6, 8] provides good inspiration for pattern 
filtering techniques, since every pattern in our view can be interpreted as a virtual 
binary feature. When selecting a feature selection technique, one has to make sure that 
one or more of our intuitions is satisfied. Many feature selection methods consider the 
quality of individual features, for example based on correlation with the target 
concept, and thus potentially produce redundant feature sets. Selection techniques that 
do consider the value of features in the context of others are more precisely referred to 
as feature subset selection techniques. Wrapper methods are good examples of such 
techniques [6, 8]. For an overview, see [2]. 

A domain concerned with the production of a concise set of interesting patterns is 
known as Subgroup Discovery [1, 3, 9, 10, 12]. The typical approach is to define an 
interestingness measure, often related to correlation with the target, and then find the 
top k patterns with respect to this measure. Unfortunately, such techniques often do 
not consider potential redundancy, and therefore suffer from the same limitations as 
many feature selection methods. Zimmermann et al. [12] describe a method called 
CorClass for finding the top k predictive association rules, based on interestingness 
measures such as novelty, information gain or Χ 2. The convexity of such measures 
can be used to find the best rules efficiently. However, due to the redundancy among 
these rules, relatively high values of k ([12] proposes k = 1000) are needed to at least 
include the essential dependencies required for obtaining good predictive scores. A 
range of well-known rule combination strategies is used.  

For more related work, see [5]. 

6 Conclusions and Further Work 

We have presented a method for reducing the number of patterns returned to the 
user by a pattern discovery algorithm. The method works by selecting from the 
(potentially large) collection of patterns deemed interesting by the discovery 
algorithm a small set of patterns that optimises some quality function for pattern sets. 
We refer to such an optimal set of patterns of specific size as a pattern team. By only 
allowing a small number of patterns in the pattern set, and selecting the right quality 
measure, the resulting pattern team reduces the amount of redundancy between 



patterns, while retaining as much of the information captured by the patterns as 
possible. We have presented four measures that capture different qualities of pattern 
sets. Two unsupervised measures, Joint Entropy and Exclusive Coverage, promote 
independence or reduce overlap, respectively. The remaining two supervised 
measures, DTM Accuracy and Area Under Curve, are based and how well the pattern 
set performs as input to a simple classifier, and how well it performs as a collection of 
points in ROC-space, respectively. Initial experimentation shows that Joint Entropy 
and DTM Accuracy produce the most useful results, and satisfy a number of intuitive 
expectations of end-users concerning non-redundancy and predictive quality of the 
patterns returned. 

We have implemented the proposed pattern team discovery scheme in the Safarii 
system. Space limitations unfortunately prevent a detailed description of algorithmic 
aspects of the efficient computation of pattern teams. Interesting optimisations over 
naïve implementations can however be obtained for the quality measures presented 
[4], and we intend to extend our work in this direction. Furthermore, alternative 
quality measures can be thought of. Apart from quality measures on the level of 
pattern sets, one could envisage selecting pattern sets on the basis of inductive queries 
based on relationships between its member patterns, for example by requiring a 
certain amount of dissimilarity between every pair of patterns. A pattern team would 
thus optimise a given quality measure, as well as satisfy a number of inductive 
constraints. 
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