
A Multi-Relational Approach to Spatial Classification
Richard Frank

School of Computing Science
Simon Fraser University
Burnaby BC, Canada

rfrank@cs.sfu.ca

Martin Ester
School of Computing Science

Simon Fraser University
Burnaby BC, Canada

ester@cs.sfu.ca

Arno Knobbe
LIACS, Leiden University
Leiden, the Netherlands

knobbe@liacs.nl

ABSTRACT
Spatial classification is the task of learning models to predict class
labels based on the features of entities as well as the spatial
relationships to other entities and their features. Spatial data can
be represented as multi-relational data, however it presents novel
challenges not present in multi-relational problems. One such
problem is that spatial relationships are embedded in space,
unknown a priori, and it is part of the algorithm’s task to
determine which relationships are important and what properties
to consider. In order to determine when two entities are spatially
related in an adaptive and non-parametric way, we propose a
Voronoi-based neighbourhood definition upon which spatial
literals can be built. Properties of these neighbourhoods also need
to be described and used for classification purposes. Non-spatial
aggregation literals already exist within the multi-relational
framework, but are not sufficient for comprehensive spatial
classification. A formal set of additions to the multi-relational data
mining framework is proposed, to be able to represent spatial
aggregations as well as spatial features and literals. These
additions allow for capturing more complex interactions and
spatial occurrences such as spatial trends. In order to more
efficiently perform the rule learning and exploit powerful multi-
processor machines, a scalable parallelized method capable of
reducing the runtime by several factors is presented. The method
is compared against existing methods by experimental evaluation
on a real world crime dataset which demonstrate the importance
of the neighbourhood definition and the advantages of
parallelization.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
mining, spatial databases and GIS

General Terms
Algorithms, Experimentation, Theory

Keywords
spatial data mining, spatial classification, aggregation,
parallelization

1. INTRODUCTION
This paper is concerned with Data Mining in spatial data.
Specifically, we are interested in the discovery of predictive
patterns that help solve a spatial classification task [4]. For
example, we may be interested why a house will be burgled, in
terms of its spatial characteristics, such as location, the nature of
neighbouring houses and the proximity of other spatial entities
(roads, shops, etc.). Due to the relational nature of the data, it is
logical to approach the spatial classification task as a multi-
relational one. We will show that additional techniques are
required to deal with issues that are unique to the spatial domain.
Although multi-relational (MR) techniques are a promising start,
they cannot be applied directly to spatial data since MR and
spatial data are different in the way relationships between entities
are defined. In an MR database, the relationships are explicitly
given but with spatial data, these same relationships are only
implied through the spatial location of the entities themselves.
Therefore, in order to involve information regarding neighbouring
entities, these relationships need to be made more explicit.
As an additional complication of spatial data, relationships in
spatial data can be numerous: for a typical mall there are literally
thousands of houses scattered near it. Hence, each individual
relationship can become insignificant on its own, requiring the use
of some form of (spatial) aggregation. Simple aggregation
however is not enough. In the multi-relational domain,
dependencies between features of entities might exist, but for
spatial entities, they are known to play a crucial role. This
dependency is based on Tobler’s First Law of Geography [20]
which states that “the larger the distance between entities, the
more negligible their effects on each other”.
The field of Multi-Relational Data Mining (MRDM) [22] deals
with data organized into types with each type t having a (possibly)
different set of features. Entities in t are related to entities of other
types, or to other entities in t itself. The classification process
starts at a specific type, called the target type τ. All entities in τ
have exactly one of multiple possible class labels assigned to
them. The model learning involves features of the target type τ,
and expands out to other types in order to involve additional
information related to τ. Similar to a multi-relational database, a
spatial database S also contains a set of entity types with t
denoting a specific type, for example house or mall. Each entity
has features being of one type from the set {date, numeric,
categorical, spatial}. The goal of spatial classification is to find
patterns and learn predictive models based on interactions of
spatial and non-spatial features of the entities in S.
In this paper, we explore the multi-relational approach to spatial
classification. A novel comprehensive spatial classification rule-
learner is proposed, called Unified Multi-relational Aggregation-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD’09, June 28 – July 1, 2009, Paris, France.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

based Spatial Classifier (UnMASC). It builds neighbourhood
relationships via a novel Voronoi-based approach, with rules
incorporating a broad range of spatial and aggregation literals that
are created on-the-fly. As our running example, we will use the
spatial database shown in Figure 1, which contains information
about three spatial and one non-spatial entity-types. Note the lack
of (non-spatial) relationships between the spatial entities. Each
spatial entity has a shape feature that contains the polygonal
representation of the entity, from which the area, perimeter,
location and other spatial features can be derived.
The contributions of this paper are as follows:

• Formulating the spatial classification problem as a MR one.
This gives the rule-learner a solid theoretical foundation and
allows for new insights into the problem and solution

• Uniquely establishing neighbourhood relationships between
entities via a novel non-parametric Voronoi-based approach
which filters out irrelevant relationships

• Extending the MRDM framework to represent spatial
aggregation using functions and literals

• Presenting a parallel implementation of the above techniques
through UnMASC

• Experimentally evaluating UnMASC on real-world data
In Section 2 the Voronoi neighbourhood definition is contrasted
to existing methods. Section 3 presents the formal MRDM
framework and the extensions required for spatial data mining.
The algorithm is discussed in Section 4, while experimental
results are shown in Section 5.

2. NEIGHBOURHOOD DEFINITIONS
Since spatial data only indirectly implies relationships via the
spatial location of the entities, some work has to be done to
explicitly determine whether two entities are related. Tobler’s
First Law of Geography implies that relationships are important to
different degrees, and this importance is influenced by distance.
This means that a spatial classifier needs to focus on neighboring
entities in order to save analyzing unlikely dependencies between
distant entities and avoid constructing misleading rules. In the
following, we review state-of-the-art neighborhood definitions
from the literature, topological relationships [4, 15, 17] and
buffer zones [6, 2], and argue that they are inadequate for the
purposes of spatial classification. Finally, we introduce a novel
neighborhood definition based on Voronoi diagrams.
Topological relationships, preserved under translation, rotation or
scaling [7], define the relationship between two entities in terms
of eight predicates that describe the intersections of their
boundary, interior and exterior [15] (e.g. meet, overlap). They are
very common and easy to understand, but do not always capture
the intuitive notion of a neighbourhood. Many people would
define themselves as living in the neighbourhood of a mall even if
they lived in the close vicinity and not directly adjacent to it.

Buffer zones are more commonly used for finding the
neighbourhood of an entity. The buffer zone of size d around an
entity i of type t, denoted et,i, is the area that is within distance d
to et,i (Figure 2). Any entities intersecting the buffer zone are
defined to be neighbours of et,i. Unfortunately, buffer zones do
have major drawbacks. First, for entity types of greatly varying
size and range of influence, a constant sized buffer zone (3a)
either becomes too large (3b) or becomes irrelevant (3c). Second,
in principle, an infinite number of buffer zone sizes could be
selected, and each size possibly changes the resulting rules [18].
Third, for all entities in t, the distribution can change significantly
across the entire dataset (Figure 4).
What is needed is a neighbourhood definition that can take into
account the number of entities and their distribution, ideally one
without user input. The notion we adopt here is that of the
Voronoi diagram. Voronoi diagrams partition a plane into
regions, called Voronoi cells, which contains the area that is
closest to the entity contained in the Voronoi cell, naturally
representing relationships between entities [3]. Voronoi diagrams
can be computed for point data (e.g. houses), segment data (e.g.
roads), and areal data (e.g. lakes) [10]. Note that we use all these
data-types in our experiments (see Section 5).
Voronoi diagrams have been used in the domain of computer
geometry [10]. With the aid of Voronoi diagrams, entities of a
single type were used for clustering [8], and outlier detection [1].
As opposed to having only a single entity-type, [3] used Voronoi
diagrams for finding spatial association rules for multiple entity-
types. However, though the dataset contained multiple entity-
types, the Voronoi diagram itself was created as if all entity-types
were the same. This does not take advantage of the fact that the
entity-types are of different characteristics, and creates a
neighbourhood structure that connects adjacent entities only.
A definition is required that creates meaningful neighbourhood
relationships between multiple types of entities in spatial data,
while preserving the importance of different types. People tend to
go to the closest mall, food-store, hospital or airport, and the
definition needs to take advantage of this. Based on this idea, for
each entity-type, we construct a different neighbourhood structure
using Voronoi diagrams. This is defined as follows:

DEFINITION 1. (Voronoi Neighbourhood) Two entities, et,q and
es,r, are neighbours iff:
• et,q intersects the Voronoi cell of es,r or es,r

 intersects the
Voronoi cell of et,q, and et,q and es,r are different entity types,
i.e.: t ≠ s, or,

• the Voronoi cells of et,q and es,r are adjacent, and et,q and es,r
are of the same type, i.e.: t = s.

This implies that entities close to et,q have the most influence on
et,q, which is consistent with Tobler’s First Law of Geography.
The proposed approach cannot, and purposely does not, find

Malls Roads Houses Owner
ID ID ID ID

Employees # Lanes Size Name
Managers Type Value Age

Profitable (label) Speed Limit Income Gender
SHAPE SHAPE SHAPE

Figure 1: Sample database schema Figure 2: Buffer Zones for Malls

patterns at arbitrary proximities since it makes the assumption that
patterns that do not appear in close proximity (that is, connected
by a neighbour literal) are not interesting. The Voronoi
partitioning is completely data-driven and does not rely on any
domain knowledge of the user. Thus the proximity for each entity
type is derived from the distribution and number of entities of that
entity type. For regions with lots of houses, for example, the
proximity will be small; however for entity types with only few
entities, such as airports or hospitals, the proximity will be very
large. This creates a very natural concept of neighbourhood as, for
example, each house is a neighbour to their closest malls, and
each mall is a neighbour to other nearby malls (Figure 5).

3. MR RULES FOR SPATIAL MINING
To learn classification rules on a spatial dataset S, a target entity
type τ and a class label from τ are selected by the user. Each entity
in τ, called a target entity, has exactly one class label assigned.
The goal of classification is to find rules that predict which class a
target entity belongs to, given its own location, feature values,
relationships to other entities, their locations and features. The
entities of τ can either be interrelated to other entities also in τ or
related to entities of other types. In instances when they are
interrelated, the class label may depend on other entities of the
same type and their class labels [19].

3.1 Preliminaries
As customary in Multi-Relational Data Mining, we will use first
order logic (FOL) clauses [5] to represent classification rules. In
FOL, entities are represented by constants, and comparisons of
terms to constants are expressed by literals, which make up rules:

DEFINITION 2. Terms are constants and variables.

DEFINITION 3. A literal is a mapping of terms to a Boolean value,
or a comparison θ of a term to a constant, where θ ∈{=,<,≤,>,≥}.

DEFINITION 4. A classification rule is of the form L0 ← L1 ∧ L2 ∧
… ∧ Ln. Where each Li is a literal, and L0 specifies a class-label.

The literals are implicitly existentially quantified. As an example:
R1: profitable(M, ‘yes’) ← mall(M), neighbour(M, H),

house(H), income(H, I), I > 100,000
states that “a mall is profitable if there exists a neighbouring
house with income greater than $100,000”. Here house H is
implicitly existentially quantified. mall(M) is derived from entity
table mall, neighbour denotes a relationship between mall and
house, and income is a feature of house. The rule requires at least

one house, but it is likely that most malls have at least one
neighbouring house with income greater than $100,000.
Therefore, R1 is relatively weak. What could help is determining
how many such houses are neighbours.
With MR and spatial data, any single entity in ti can be related to
multiple other entities in tj. To describe the feature values of these
related entities, aggregation functions can be used. Chelghoum et
al. [6] present a pre-processing technique in which a separate
table is created to summarize the relationships between ti and tj.
The drawback is that as the rule is being built, a condition could
be placed on some feature of ti (for example size(H, S), S =
‘large’), which would invalidate the pre-aggregated values.
Furthermore, there are a large number of aggregations, which
typically yields a table of considerable size [11, 21]. The
aggregations presented in this paper could in theory also be
applied as a pre-processing step, but then would suffer from these
same limitations. In order not to be limited, features must be
aggregated during the literal search and not a priori.

3.2 Single and Multi-Feature Aggregation
Recently, FOL has been extended to include aggregation using
functions involving single [11, 21] and multiple [9] features:

DEFINITION 5 A single-feature aggregation (SFA) function maps
a bag of elements from the domain of a feature to a single value
from another (possibly different) domain.

DEFINITION 6 A single-feature aggregation literal has the form
Agg(input, {conditions}, result) where input is a variable
specifying the bag of feature values to be aggregated by Agg,
constrained by conditions, and result is an output variable
referencing the result of the aggregation.

DEFINITION 7. A multi-feature aggregation (MFA) function
maps multiple lists of elements from the domains of the features to
a single value of another domain.

DEFINITION 8. A multi-feature aggregation literal has the form
Agg({input1, input2, …, inputi}, {conditions}, result) where input
specifies lists of corresponding feature values aggregated and
constrained by conditions. result is the output variable of the
MFA function corresponding to Agg.

Single-feature aggregations include functions such as count.
Multiple features can also create literals by applying functions
like correlation and t-test. The exact functions available depend
on the type of feature(s) being aggregated. A comprehensive list
of aggregations used in the literature is presented in [9].

a) around a city

b) around a house

c) around a province

Figure 3: 3 km buffer zone around different entity types Figure 4: Varying density
buffer zones

Figure 5: Voronoi neighbourhood
definition (shadings represent roads)

As an example, using these constructs, we can capture average
value and correlation between income and size of houses yielding
R2: profitable(M, ‘yes’) ← mall(M),

AVG(V,{neighbour(M, H), house(H), value(H, V)}, A),
CORR({I, S}, {neighbour(M, H), house(H),
 income(H, I), size(H, S)}, C), A > 100,000, C < 0

With R2 it is possible to express that “a mall is profitable if, for
neighbouring houses, the average value is greater than $100,000
while the house-hold income and size of house are negatively
correlated”. This rule implies that higher income earners live in
smaller houses, leading to a possible higher disposable income.

3.3 Spatial Features
Spatial data is unique from non-spatial data in that it has implicit
features, such as location or size, to be derived from the polygon
associated with the entity. Some simple spatial features (Figure 6)
have been used in the literature [2, 17], but are not appropriate in
describing entities like road-segments or parks (the perimeter of
‘Highway 1’ is not useful). To increase the expressiveness of the
language and measure interesting properties of 2D entities, a
comprehensive and appropriate independent set of features needs
to be introduced (Figure 7) using spatial features:

DEFINITION 9. A spatial function, with at least 1 parameter,
returns a calculated property for the input(s).

DEFINITION 10. A spatial feature is a spatial function applied to
a spatial variable. It describes some property of the input entity
and has the form SpatFeat(input). A condition and a threshold
could also be applied.

Using this construct, different spatial functions from any domain
can easily be incorporated into the multi-relational rule-learning
process. For example, catchment_area(M) denotes the area of the
Voronoi cell that mall M is in, motivated by research in marketing
[14]. This is defined as the area and population from which some
entity (mall for example) attracts customers. Since spatial data, by
default, does not contain explicit relationships, these need to be
expressed and are added to FOL as spatial literals:

DEFINITION 11. A spatial literal represents the relationship
between two spatial entities. It has the form SpatLit(input1,
input2) or SpatLit(input1, input2) θ v, depending on whether a
comparison and threshold are applicable and used.

DEFINITION 12. A neighbour literal is a special spatial literal
representing the existence of a relationship between two spatial
entities, as defined by a neighbourhood definition. It has the form
neighbour(input1, input2).

For example, house(H) and mall(M) can be connected with spatial
literal neighbour(H, M). The literal neighbour(H,M) was created

because, according to the neighbourhood definition, such as the
buffer-zone or Voronoi neighbourhood, there is a relationship
between H and M. Some spatial literals have already been
explored [7], but a few critical additional spatial literals (Figure 8)
need to be added to take advantage of the extra information
available due to the use of Voronoi diagrams.

3.4 Spatial Aggregation
Since, in general, spatial data contains a lot of entities belonging
to the same type, the effect of a single entity becomes relatively
limited. Aggregation-based methods [21, 11, 9] address this
problem, as described in the previous sections. However, applying
existing (non-spatial) methods to spatial data might yield
unreliable results. As an example, regression analysis does not
adjust for spatial dependency and thus can have unreliable
parameter estimates and significance tests [13]. Analogous to the
format of multi-feature aggregation literals, the following spatial
aggregation literals are added to the language:

DEFINITION 13. A spatial aggregation (SA) literal has the form
Agg({input1, input2, …, inputi}, {conditions}, result) where i ≥ 1
and input specifies the lists of corresponding feature values
aggregated and constrained by conditions. result references the
result of the aggregate function corresponding to Agg.

Figure 9 presents three spatial aggregation literals incorporated in
our framework. They represent the spatial statistics functions most
commonly used in the literature [12]. Spatial trends (e.g. trend)
describe the correlation of a (non-)spatial feature-value f and the
distance d away from a central entity. If d were replaced with
another, non-spatial, feature, this measure is equivalent to
correlation. Spatial trend has a domain of [-1,1] with the value
denoting the direction of linear relationship (for example, -1
meaning f decreases as d increases).
Spatial autocorrelation (autocorrelation) measures changes in f
with respect to the values of f of the neighbouring entities. Since
the non-spatial aggregate function SUM can be misleading due to
the effect of the different sizes of the neighbourhoods,
area_adjusted_mean yields a spatially-averaged value. For
example, pollution level for a factory is not an absolute number
but a per km2 value, i.e. it has been adjusted for the area it covers.
As an example, using the literal trend() and a condition “result <
0”, the rule can now capture a relationship of decreasing income
and increasing distance relative to a central mall:
R4: profitable(M, ‘yes’) ← mall(M),

TREND({I, D}, {neighbour(M, H), house(H),
 income(H, I), distance(M, H, D)}, S), S < 0

This rule can be used to maximize the profit of a mall by
advertising more to the close, high income, houses. Further,
investors considering locations for future malls can place malls
close to high income neighbourhoods.

Spatial Features Spatial Literals Spatial Aggregation Literals
- length - width - start_y - end_x - voronoi_neighbour - trend
- perimeter - end_y - start_x - road_distance - autocorrelation
- area - centroid_x - centroid_y - travel_time - area_adjusted_mean
- x - y - catchment_area
Figure 6: Existing spatial

features
Figure 7: Novel spatial

features
Figure 8: Novel spatial

literals
Figure 9: Spatial Aggregation

Literals

4. RULE LEARNING
Our MR-based spatial classification algorithm, UnMASC
(Unified Multifeature Aggregation based Spatial Classifier), is
based on the idea of the sequential covering algorithm [22]. The
goal is to learn classification rules on entities with known class-
labels (training entities), then use those rules to predict the label
for new entities (testing entities). The learning and prediction is
based on the entity’s own feature values, (spatial) relationships to
other entities and their feature values. The specific relationships
materialized are given by the neighbourhood definition (such as
buffer-zone or Voronoi neighbourhood) which is specified a
priori. Spatial calculations are performed in the DBMS. We focus
on the two-class classification problem.
In current algorithms, such as [22], the search space is explored
serially as each evaluation takes place one after the other (Section
4.1). With multi-processor machines available today, this method
of evaluation is inefficient since it is unable to exploit the
available processing power. Our algorithm (Section 4.2) is able to
perform this search process in an optimized parallelized fashion.
We describe this parallelization, and the optimizations done to
further improve the benefits of parallelization (Section 4.3).

4.1 Preliminaries
The learning of rules is done by generating one rule at a time and
refining them incrementally by adding literals until a termination
condition applies (for example Minimum Support). Once a rule is
finalised, the covered entities are removed from the training set,
and a search for another rule starts. The rule-learning process ends
when there are not enough entities in the training set for a rule.
When refining a rule, the rule is extended by at least one literal at
a time. If the entity type t in the literal being added is already
referenced in the rule, then a feature literal is added with a new
condition on some feature(s) of t. If the entity type in the literal
has not been referenced in the rule, then up to three literals are

added: an Entity Literal referencing t, a Relationship Literal
denoting the relationship of t to an entity type already in the rule,
and possibly a Feature Literal with a condition on a feature of t.
Each new rule references the target entity type τ. When searching
for the next best literal, each entity type t that shares a (spatial)
relationship with τ is searched. The search finds the feature,
aggregation, constant value and comparison operator that yields
the highest FOILGain [16], which is then added to the rule as a
new literal. Note that depending on the neighbourhood definition,
entities of type t could be neighbours to other entities of type t.
For non-empty rules the search is more complicated since any
entity type with a relationship to another entity type referenced by
the rule must be evaluated. The more entity types referenced, the
more relationships there are, and the larger the number of
candidate literals that need to be evaluated.

4.2 The UnMASC Algorithm
When evaluating refinements of the current rule, the entity types
that are considered include each entity type (neigEntity) that
neighbours currently referenced entity types. The set of
neigEntity's is called neigEntitySet. For each neigEntity, the
FOILGain of all aggregations applied to their corresponding
feature(s) is evaluated independently of the other evaluations. The
decision of which literal to add to the rule is being made only after
the FOILGain has been evaluated for all neigEntity’s. This
indicates that the evaluation of multiple neigEntity's can be
performed in parallel. UnMASC takes advantage of this by
performing multiple literal searches simultaneously (see Section
4.3). To do this, UnMASC is split into two parts, RuleLearner
(Section 4.2.1) and LiteralEvaluator (Section 4.2.2). RuleLearner
is responsible for determining which entities to search, tracking
rules and the target entity IDs satisfied by the rules. RuleLearner
executes multiple instances of LiteralEvaluator which determine
the best literal, given a specific set of entities to search.

Algorithm 1 RuleLearner (minSupp, DB, TargetEntityType, TargetLabel)
1: RuleSet ← ∅
2: EntityIDs ← IDs of entities of type TargetEntityType
3: UncoveredEntityIDs ← EntityIDs
4: while |UncoveredEntityIDs| > |EntityIDs| * minSupp //start a new rule
5: Rule ← empty rule
6: RuleEntities ← EntityIDs covered by Rule
7: while |RuleEntities| > |EntityIDs| * minSupp //search for literal
8: neigEntitySet ← ∅
9: for each neigEntity with relationship to entity-type referenced in Rule
10: neigEntitySet ← neigEntitySet + neigEntity
11: while |neigEntitySet| > 0
12: while all threads busy
13: WAIT
14: Start Thread [LiteralEvaluator(Rule, neigEntity, RuleEntities)]
15: neigEntitySet ← neigEntitySet - neigEntity
16: BestLiteral ← result with highest FG value from all results
17: Update Rule by adding BestLiteral
18: RuleEntities ← remove from RuleEntities entities covered by BestLiteral
19: UncoveredEntityIDs ← remove from UncoveredEntityIDs entities covered by Rule
20: RuleSet ← RuleSet ∪ {Rule}
21: return RuleSet

Figure 10: UnMASC RuleLearner

4.2.1 RuleLearner
Initially, the rule-learning starts with an empty rule R, with the
target-entity type τ given (Figure 10 – line 5). RuleLearner
assembles the set neigEntitySet of neigEntity that require
evaluation: if R is empty, then all entity types that have a
neighbourhood relationship with τ are added into the set.
Otherwise any entity type with a neighbourhood relationship with
any referenced entity type in R is added to the set (lines 8-10).
Once neigEntitySet is complete, RuleLearner will start to evaluate
each. It does so by calling LiteralEvaluator, which, given the
current rule and target entity IDs that satisfy the rule thus far,
finds and returns the best literal (lines 11-15). A queuing system
allows the number of simultaneous threads of LiteralEvaluator to
be limited by the number of CPUs present. As a LiteralEvaluator
completes a task, a new neigEntity is assigned to it.
During the literal search, once all neighbouring entity types are
evaluated, the one that produces the highest FOILGain is selected
and, if the resulting rule satisfies the minimum support criteria, is
added to the rule (lines 16-18). If none of the refinements of a rule
achieves the minimum support, then the current rule is complete.
The entities in the training dataset which satisfy the rule are
removed, and a new rule is started (lines 19-20).

4.2.2 LiteralEvaluator
LiteralEvaluator (Figure 11) returns the best literal and
FOILGain, given a neigEntity and training entities not covered by
any previous rule. First LiteralEvaluator retrieves the required
dataset for analysis (lines 2-3), looking at each feature of
neigEntity, and applying all appropriate aggregation functions
(lines 4-7). For each aggregated feature, a second feature is
selected and multi-feature aggregation is performed (lines 8-11).
If neigEntity is a spatial entity, then the spatial features are
extracted and spatial aggregation is performed (lines 12-17). Each
aggregation result is searched for the best comparison operator
and value with the highest FOILGain. The aggregation, feature
and threshold with the highest FOILGain are returned (line 21).

4.3 Parallel Literal Search
RuleLearner creates multiple LiteralEvaluator threads
simultaneously, each responsible for analyzing a different
neighbourhood relationship. The number of simultaneous
evaluations varies but is limited by the number of CPUs, so each
runs on a dedicated CPU. If the number of possible
neighbourhood relationships exceeds the available CPUs, then
they are placed into a queue and are evaluated when a CPU
becomes available. This setup is illustrated in Figure 12.
The different LiteralEvaluator threads all share the same main
memory, although each thread has its own independent portion
since each works with a different subset of the data. For each
thread, the relevant entity-types, entities and features are retrieved
from the database and loaded into main memory. Once a thread is
finished with its own task, the memory is released, the result of
the thread stored with the other results, and the required dataset
for the next queued task is retrieved (Figure 12 - Time 2). The
dataset required for each thread is computed by a join of some
database tables and the time required for the retrieval is negligible
since no aggregations are performed during retrieval.
There are however considerable differences between the sizes of
the datasets used by different threads. For example, using the
tasks from Figure 12 Time 1, the cost for evaluating {Malls} is
expected to be relatively small since there are only a few malls in
a city and no aggregations are involved (since there's only a single
entity-type). {Malls, Houses} however is expected to incur much
higher cost since there are many houses in a city, and the
evaluation requires that houses be aggregated over their
neighbouring malls. {Malls, Roads} incurs a cost that is between
the other two threads since the number of roads is likely to be
smaller than the number of houses in a typical city.
Since the cost for each task varies, sometimes greatly, it is
possible that a very costly task is executed last, in which case all
but one threads are idle and the benefits of parallelization are
invalidated. The risk of this depends only on the variability of the
number of entities of each entity-type: the larger the variability,

Algorithm 2 LiteralEvaluator(rule, neigEntity, entities)
1: FG′ = 0
2: determine relationships between entities covered by rule and entities in neigEntity
3: retrieve corresponding dataset from DB
4: for all currFeat1 of neigEntity
5: for each singleAgg from all single-feature aggregation functions (incl. existential)
6: FG ← Calculate FOILGain for currFeat1 using singleAgg
7: if FG′ < FG then [currFeat1′, currFeat2′, Aggr′, FG′] = [currFeat1, , singleAgg, FG]
8: for all currFeat2 of neigEntity
9: for each multiAgg from all multi-feature aggregation functions
10: FG ← Calculate FOILGain for <currFeat1, currFeat2> using multiAgg
11: if FG’ < FG then [currFeat1′, currFeat2′, Aggr′, FG′] = [currFeat1, currFeat2, multiAgg, FG]
12: if neigEntity is a spatial entity
13: extract spatial features
14: for each spatial feature spatFeat of neigEntity
15: for each spatAgg from all spatial aggregation functions
16: FG ← Calculate FOILGain for <currFeat1, spatFeat> using spatAgg
17: if FG′ < FG then [currFeat1′, currFeat2′, Aggr′, FG′] = [currFeat1, spatFeat, spatAgg, FG]
18: candLit ← [neigEntity, currFeat1′, currFeat2′, Aggr′, FG′]
19: return candLit

Figure 11: UnMASC LiteralEvaluator (to denote best solution, an ′ is used)

the larger the differences in task-sizes. If the cost for each task can
be estimated well enough, the queue can be reprioritized to avoid
this scenario. Since the size of the task is unknown a priori, we
estimate this based on the number of entities of each type and the
number of relationships between them. Then we rearrange the
tasks in the queue such that the largest tasks get executed first.
Each search is made up of a permutation of n entity types which
can be denoted as {t1, …,tk–1, tk,…, tn}, where t1 = τ. Each entity
type tk–1 has, on average, | tk-1 tk | / | tk-1 | neighbours of type tk,
where | tk-1 tk | denotes the number of relationships between
all entities of type tk–1 and tk, and | tk-1 | denotes the number of
entities of type tk-1. For example, assume there are 10 malls (| tk-1 |)
and in total 100 neighbourhood relationships between malls and
houses (| tk-1 tk |), then this implies that, on average, there are
100/10 = 10 neighbouring houses per mall. Thus the total number
of relationships between the target entity-type (t1) and the entity-
type being searched (tn) can be estimated by

1
1 n

2 1

cost(t ,t)=
n

k k

k k

t t
t

−

= −
∏

 .

Multi-feature and spatial aggregation is then performed on the
features (f) of the entity-type that is searched (tn) by choosing two
features to aggregate, which can be done in !

2!(2)!2
f

ff C −=

ways. Thus the total cost of a specific task is estimated by

1
1 n

2 1

!total_cost(t ,t)
2(2)!

n
k k

k
k k

t tft
f t

−

= −

=
− ∏

5. EXPERIMENTS
As a result of collaboration with the Criminology Department at
Simon Fraser University (SFU), real-world crime data was
available with location, time, and type of calls for service for the
Royal Canadian Mounted Police (RCMP) in British Columbia
(BC) between August 1, 2001 and August 1, 2006. Also available
was the British Columbia Assessment Authority (BCAA) dataset
containing the property values of all plots of land within BC. The

city of Burnaby, BC, was selected as the test dataset. As a pre-
processing step, each plot was assigned a counter, denoting the
number of burglaries which have occurred at that location. This
count was then used to create a Boolean class-label (if count>0
then burglarized, else not burglarized). The entire dataset
contains 22 different entity types, with each type containing from
3 to 34,000 entities, an average of 3,100 entities per type.
UnMASC was evaluated using three neighbourhood definitions.
With the first alternative, the neighbours were pre-materialized
using buffer zones of variable size, where the radius is given by:

() / { ()}radius area Burnaby count EntityTypeπ= ×

This dataset contained 2.8 million spatial relationships between
entities. The second dataset was pre-materialized using the
Voronoi neighbourhoods proposed in this paper, with 3.8 million
spatial relationships. In order to evaluate the importance of the
neighbourhood, a third was created which contained only the
target entity-type. Note that the third alternative only uses
information on the target entity type and since no neighbouring
entity types are evaluated, the search-space is much smaller. All
three methods were tested and compared for their impact on
precision, recall and accuracy. Measurements were taken for the
rules learnt on the target class (burglarized).
Experiments were run using an implementation of the UnMASC
algorithm running on an 8-CPU Windows server tied to a backend
database with DB/2 v9.1 Spatial Extender. The operating system
was allowed to set the CPU-affinity of each instance, which meant
no two instances were running on the same CPU simultaneously.
5-fold cross-validation was performed. To evaluate the
effectiveness of the parallelization of UnMASC, classification was
performed in both parallel (6 threads) and serial (1 thread). Note
that for the dataset with only the target entity-type, since there is
only a single type, producing only a single task for each literal
search, this dataset could not be evaluated in a parallel fashion.

5.1 Burglaries of Commercial Properties
For our first experiment, the set of 2812 commercial properties
were selected as the target entities. Commercial properties where

Figure 12: Search Process Example

burglaries have occurred were chosen as the target-label, with
33% of the properties falling under this label within the 5-year
period considered. The Voronoi neighbourhood definition had
higher precision while having lower recall. Accuracy was higher.
The parallel version of UnMASC outperformed the serial version
by a factor of about 5.4 (Figure 13). Rules built only on the target
entity-type, without any neighbouring entities, performed barely
better than the trivial classifier. This clearly illustrates the
significance the neighbourhood plays in spatial classification.
It is interesting to note that there was a significant difference
between buffer zones and Voronoi neighbourhoods in the number
of neighbours each commercial property has. On average, for each
commercial property, the number of neighbouring commercial
properties using buffer zones was 20 times that of Voronoi
neighbourhoods, while the number of neighbouring non-
commercial properties was only 0.4 times. This clearly indicates
that buffer zone rules were built more on neighbouring
commercial properties and less on non-commercial properties,
than the rules built on Voronoi neighbourhoods. Due to the use of
zoning for city planning in Canada, commercial properties (as
well as other property types) tend to be clustered, which the buffer
zone is unable to bypass and hence precision of the resulting rules
suffers. This was also the reason for the large difference in run-
times: when performing the aggregations, the buffer zone had to
aggregate much fewer values than the Voronoi approach, resulting
in a reduction in runtime (and precision). Note that this difference
in runtime was not seen in the next set of experiments.

5.2 Burglaries of Industrial Properties
As a second classification task, 453 industrial properties were
selected for rule learning with the 16% of properties which were
burglarized selected as the target. Precision and recall for Voronoi
neighbourhoods were 57% and 69.4% respectively, beating the
buffer zone by 4% and the trivial classifier by 3%. Both
neighbourhood approaches had comparable runtimes, in both
parallel and serial mode, with the parallel version of UnMASC
outperforming the serial version by, on average, a factor of 5.1
(Figure 13). Rules built only on the target entity-type performed
somewhat better than the trivial classifier but significantly worse
than rules built with neighbouring entity-types.

5.3 Burglaries of High Rise Properties
As a third classification task, 1036 high-rise properties were
selected for learning rules with the 44.3% of properties which
were burglarized selected as the target. Precision and recall for

Voronoi neighbourhoods were 85.2% and 87.8% respectively,
beating the buffer zone by a small margin, and the trivial
classifier’s accuracy (55.7%) by 32%. Both neighbourhood
approaches had comparable runtimes, with the parallel version of
UnMASC outperforming the serial version by, on average, a
factor of 5.21 (Figure 13). Similar to the previous experiments,
including neighbouring entity-types provided a significant
increase in precision and accuracy, demonstrating again the
importance of the role of neighbourhood.

5.4 Rule Analysis
R7 (Figure 14) illustrates a sample rule that was found. It denotes
that a commercial property (L1) is likely to be burglarized if the
median building-value of neighbouring industrial properties is
worth less than $445,000 (L2) and has neighbouring parks with
areas less than 14,400m2 (L4). The commercial property also has
neighbouring industrial properties with a spatial trend where
duplexes are cheaper the further east they are, and more expensive
the further west they are. This could indicate that the commercial
property is in a relatively inexpensive industrial neighbourhood,
acting as an attractor to crime, while neighbour to parks which
could be a source of people inclined to commit crimes.
Another interesting sample rule involving high-rises, R8 (Figure
14), was discovered. It states that a high-rise is likely to be
burglarized if it is worth more than $2.2 million (L1), the average
distance to a commercial property is less than 302 m (L2) and, for
neighbouring commercial properties (L3), neighbouring parks
tend to be small (L4), and duplexes tend to be worth at least
$351,500. This rule seems to indicate that expensive high-rises
near high-traffic areas are going to see more burglaries as opposed
to ones in areas without traffic.

6. CONCLUSION
In this paper a multi-relational approach to spatial classification
was presented and novel challenges identified. A Voronoi-
diagram based neighbourhood definition was proposed to make
explicit the spatial relationships. In order to handle spatial
features and aggregations in First Order Logic, a formal set of
additions to the framework was introduced. A scalable
implementation was presented, capable of evaluating multiple
literal candidates simultaneously, thus significantly decreasing the
runtime required for rule-learning. Experiments on a real-world
spatial dataset showed substantial gains in precision, recall and
accuracy compared to existing approaches for neighbourhood
definitions. Experimentation without including neighbourhood

Target Type
Class

Distribution Neighbourhood Precision Recall Accuracy
Runtime
(Parallel)

Runtime
(Serial)

Speed-
up

 None 41.6% 93.7% 54.3% 0h:37m
Buffer Zone 56.4% 92.5% 73.8% 3h:40m 19h:32m 5.32x Commercial 931+ 1881-

Voronoi 65.9% 86.7% 80.6% 7h:56m 43h:05m 5.44x
 None 19.8% 77.1% 45.2% 0h:13m

Buffer Zone 53.1% 57.6% 84.1% 4h:05m 20h:25m 5.00x Industrial 73+ 380-
Voronoi 57.0% 69.4% 86.3% 3h:47m 19h:32m 5.16x

 None 57.1% 97.6% 66.4% 0h:4m
Buffer Zone 83.4% 87.7% 86.3% 3h:18m 17h:06m 5.18x High Rises 459+ 577-

Voronoi 85.2% 87.8% 87.7% 4h:31m 23h:37m 5.23x

Figure 13: Burglaries of Commercial, Industrial and High-Rise Housing Properties

information resulted in low accuracy and precision, demonstrating
the importance of selecting the proper neighbourhood definition.
Anecdotal evidence was provided to illustrate the meaningfulness
of the rules discovered and the expressiveness of the language.
For future work, we plan to optimize the parallelization by
looking for ways to break each job into smaller pieces, perhaps
where the literal is not searched for in an entity-type, but only a
feature of an entity-type. Secondly, it would be interesting to
incorporate the temporal aspects into rule-learning to detect, for
example, temporal trends and how changes over time in
neighbourhood composition can lead to better predictions.

7. REFERENCES
[1] Adam, N. R; Janeja, V. P.; Atluri, V.: “Neighborhood based

detection of anomalies in high dimensional spatio-temporal
sensor datasets”, In Proceedings of the ACM symposium on
Applied computing (2004)

[2] Appice, A.; Ceci, M.; Lanza, A.: “Discovery of spatial
association rules in geo-referenced census data: a relational
mining approach”, In Proceedings of Intelligent Data
Analysis (2003)

[3] Bembenik, R.; Rybinski, H.: “Mining Spatial Association
Rules with no Distance Parameter”, Advances in Soft
Computing, Vol. 35 (2006)

[4] Ceci, M.; Appice, A.; Malerba, D.: “Spatial Associative
Classification at Different Levels of Granularity: A
Probabilistic Approach”, Lecture Notes in Computer
Science, Volume 3202 (2004)

[5] Ceri, S; Gottlob, G; Tanca, L.: “Logic programming and
databases”, Springer-Verlag, (1990)

[6] Chelghoum, N., Zeitouni K.: “Spatial Data Mining
Implementation - Alternatives And Performances”, GeoInfo,
pp 127-153 (2004)

[7] Egenhofer, M.J.: “Reasoning about Binary Topological
Relations”, In Proceedings of SSD, (1991)

[8] Estivill-Castro, V.; Lee, I.: “Argument free clustering for
large spatial point-data sets via boundary extraction from
Delaunay Diagram”, Computers, Environment and Urban
Systems, Vol. 26, No 4, pp. 315-334 (July 2002)

[9] Frank, R., Moser, F., Ester, M.: “A Method for Multi-
Relational Classification Using Single and Multi-Feature
Aggregation Functions”, In Proceedings of PKDD (2007)

[10] Hoff, K.; Culver, T.; Keyser, J.; Lin, M.; Manocha, D.:“Fast
computation of generalized Voronoi diagrams using graphics
hardware”, In Proceedings of SIGGRAPH (1999)

[11] Knobbe, A.J.; Siebes, A.; Marseille, B.: “Involving
Aggregate Functions in Multi-Relational Search”, In
Proceedings of PKDD (2002)

[12] Longley, P.A.; Goodchild, M.F.; Maguire, D.J; Rhind, D.W.:
“Geographical Information Systems: Principles, Techniques,
Applications and Management”, Wiley, 2nd Edition (1999)

[13] Miller, H. J.: “Tobler's First Law and spatial analysis”,
Annals of the Association of American Geographers, 94.
(2004)

[14] Ohyama ,T.: “Some Voronoi diagrams that consider
consumer behavior analysis”, In Industrial Mathematics of
the Japan Journal of Industrial and Applied Mathematics
(2005)

[15] Papadias, D., Theodoridis, Y.: “Spatial Relations, Minimum
Bounding Rectangles, and Spatial Data Structures”,
International Journal of Geographic Information Science
Volume 11, Issue 2 (1997)

[16] Quinlan, J. R., Cameron-Jones, R. M.: FOIL – A midterm
report, In Proceedings of ECML (1993)

[17] Santos, M. Y.; Amaral L. A.: “Geo-spatial data mining in the
analysis of a demographic database”, In Soft Computing - A
Fusion of Foundations, Methodologies and Applications,
Volume 9, Issue 5 (2005)

[18] Schlossberg, M.: “GIS, The US Census And Neighbourhood
Scale Analysis”, Planning, Practice & Research, Vol. 18, No.
2–3 (2003)

[19] Taskar, B., Segal, E., and Koller, D.: “Probabilistic
classification and clustering in relational data”, In
Proceedings IJCAI (2001)

[20] Tobler, W.R.: “A computer movie simulating urban growth
in the Detroit region”, In Economic Geography, Volume 46
(1970)

[21] Vens, C.; Van Assche, A.; Blockeel, H.; Dzeroski, S.: “First
order random forests with complex aggregates”, In
Proceedings of ILP (2004)

[22] Yin, X.; Han J.; Yang J.; Yu, P.S.: “CrossMine: Efficient
Classification Across Multiple Database Relations”, In
Proceedings of ICDE (2004)

R7: burglarized(C, ‘yes’) ← commercial(C),
MEDIAN(B1, {industrial(I), neighbour(C,I), building_value(I,B1)}, M), M<445,000
industrial(I), neighbour(C,I), TREND({B2, X}, {duplex(D), neighbour(I,D),
 building_value(D, B2), x_coord(D,X)}, S), S>0.798
MAX(A, {park(P), neighbour(C,P), area(P,A)}, N), N<14,400

L1
L2
L3

L4

R8: burglarized(H, ‘yes’) ←

highrise(H), building_value(H,V), V>2,160,000
AVG(D1, {commercial(C), neighbour(H,C), distance(H,C,D1)}, A), A<302
commercial(C), neighbour(H,C)
MEDIAN(W, {park(P), neighbour(C,P), width(P)}, M1), M1<122
MEDIAN(X, {duplex(D), neighbour(C,D), land_value(D)}, M2), M2>351,500

L1
L2
L3
L4
L5

Figure 14: Sample rules discovered by UnMASC

