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ABSTRACT 
Spatial classification is the task of learning models to predict class 
labels based on the features of entities as well as the spatial 
relationships to other entities and their features. Spatial data can 
be represented as multi-relational data, however it presents novel 
challenges not present in multi-relational problems. One such 
problem is that spatial relationships are embedded in space, 
unknown a priori, and it is part of the algorithm’s task to 
determine which relationships are important and what properties 
to consider. In order to determine when two entities are spatially 
related in an adaptive and non-parametric way, we propose a 
Voronoi-based neighbourhood definition upon which spatial 
literals can be built. Properties of these neighbourhoods also need 
to be described and used for classification purposes. Non-spatial 
aggregation literals already exist within the multi-relational 
framework, but are not sufficient for comprehensive spatial 
classification. A formal set of additions to the multi-relational data 
mining framework is proposed, to be able to represent spatial 
aggregations as well as spatial features and literals. These 
additions allow for capturing more complex interactions and 
spatial occurrences such as spatial trends. In order to more 
efficiently perform the rule learning and exploit powerful multi-
processor machines, a scalable parallelized method capable of 
reducing the runtime by several factors is presented. The method 
is compared against existing methods by experimental evaluation 
on a real world crime dataset which demonstrate the importance 
of the neighbourhood definition and the advantages of 
parallelization. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining, spatial databases and GIS 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
spatial data mining, spatial classification, aggregation, 
parallelization 

1. INTRODUCTION 
This paper is concerned with Data Mining in spatial data. 
Specifically, we are interested in the discovery of predictive 
patterns that help solve a spatial classification task [4]. For 
example, we may be interested why a house will be burgled, in 
terms of its spatial characteristics, such as location, the nature of 
neighbouring houses and the proximity of other spatial entities 
(roads, shops, etc.). Due to the relational nature of the data, it is 
logical to approach the spatial classification task as a multi-
relational one. We will show that additional techniques are 
required to deal with issues that are unique to the spatial domain.  
Although multi-relational (MR) techniques are a promising start, 
they cannot be applied directly to spatial data since MR and 
spatial data are different in the way relationships between entities 
are defined. In an MR database, the relationships are explicitly 
given but with spatial data, these same relationships are only 
implied through the spatial location of the entities themselves. 
Therefore, in order to involve information regarding neighbouring 
entities, these relationships need to be made more explicit.  
As an additional complication of spatial data, relationships in 
spatial data can be numerous: for a typical mall there are literally 
thousands of houses scattered near it. Hence, each individual 
relationship can become insignificant on its own, requiring the use 
of some form of (spatial) aggregation. Simple aggregation 
however is not enough. In the multi-relational domain, 
dependencies between features of entities might exist, but for 
spatial entities, they are known to play a crucial role. This 
dependency is based on Tobler’s First Law of Geography [20] 
which states that “the larger the distance between entities, the 
more negligible their effects on each other”. 
The field of Multi-Relational Data Mining (MRDM) [22] deals 
with data organized into types with each type t having a (possibly) 
different set of features. Entities in t are related to entities of other 
types, or to other entities in t itself. The classification process 
starts at a specific type, called the target type τ. All entities in τ 
have exactly one of multiple possible class labels assigned to 
them. The model learning involves features of the target type τ, 
and expands out to other types in order to involve additional 
information related to τ. Similar to a multi-relational database, a 
spatial database S also contains a set of entity types with t 
denoting a specific type, for example house or mall. Each entity 
has features being of one type from the set {date, numeric, 
categorical, spatial}. The goal of spatial classification is to find 
patterns and learn predictive models based on interactions of 
spatial and non-spatial features of the entities in S.  
In this paper, we explore the multi-relational approach to spatial 
classification. A novel comprehensive spatial classification rule-
learner is proposed, called Unified Multi-relational Aggregation-
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based Spatial Classifier (UnMASC). It builds neighbourhood 
relationships via a novel Voronoi-based approach, with rules 
incorporating a broad range of spatial and aggregation literals that 
are created on-the-fly. As our running example, we will use the 
spatial database shown in Figure 1, which contains information 
about three spatial and one non-spatial entity-types. Note the lack 
of (non-spatial) relationships between the spatial entities. Each 
spatial entity has a shape feature that contains the polygonal 
representation of the entity, from which the area, perimeter, 
location and other spatial features can be derived.  
The contributions of this paper are as follows: 

• Formulating the spatial classification problem as a MR one. 
This gives the rule-learner a solid theoretical foundation and 
allows for new insights into the problem and solution 

• Uniquely establishing neighbourhood relationships between 
entities via a novel non-parametric Voronoi-based approach 
which filters out irrelevant relationships  

• Extending the MRDM framework to represent spatial 
aggregation using functions and literals 

• Presenting a parallel implementation of the above techniques 
through UnMASC 

• Experimentally evaluating UnMASC on real-world data 
In Section 2 the Voronoi neighbourhood definition is contrasted 
to existing methods. Section 3 presents the formal MRDM 
framework and the extensions required for spatial data mining. 
The algorithm is discussed in Section 4, while experimental 
results are shown in Section 5. 

2. NEIGHBOURHOOD DEFINITIONS 
Since spatial data only indirectly implies relationships via the 
spatial location of the entities, some work has to be done to 
explicitly determine whether two entities are related. Tobler’s 
First Law of Geography implies that relationships are important to 
different degrees, and this importance is influenced by distance. 
This means that a spatial classifier needs to focus on neighboring 
entities in order to save analyzing unlikely dependencies between 
distant entities and avoid constructing misleading rules. In the 
following, we review state-of-the-art neighborhood definitions 
from the literature, topological relationships [4, 15, 17] and 
buffer zones [6, 2], and argue that they are inadequate for the 
purposes of spatial classification. Finally, we introduce a novel 
neighborhood definition based on Voronoi diagrams. 
Topological relationships, preserved under translation, rotation or 
scaling [7], define the relationship between two entities in terms 
of eight predicates that describe the intersections of their 
boundary, interior and exterior [15] (e.g. meet, overlap). They are 
very common and easy to understand, but do not always capture 
the intuitive notion of a neighbourhood. Many people would 
define themselves as living in the neighbourhood of a mall even if 
they lived in the close vicinity and not directly adjacent to it.  

Buffer zones are more commonly used for finding the 
neighbourhood of an entity. The buffer zone of size d around an 
entity i of type t, denoted et,i, is the area that is within distance d 
to et,i (Figure 2). Any entities intersecting the buffer zone are 
defined to be neighbours of et,i. Unfortunately, buffer zones do 
have major drawbacks. First, for entity types of greatly varying 
size and range of influence, a constant sized buffer zone (3a) 
either becomes too large (3b) or becomes irrelevant (3c). Second, 
in principle, an infinite number of buffer zone sizes could be 
selected, and each size possibly changes the resulting rules [18]. 
Third, for all entities in t, the distribution can change significantly 
across the entire dataset (Figure 4). 
What is needed is a neighbourhood definition that can take into 
account the number of entities and their distribution, ideally one 
without user input. The notion we adopt here is that of the 
Voronoi diagram. Voronoi diagrams partition a plane into 
regions, called Voronoi cells, which contains the area that is 
closest to the entity contained in the Voronoi cell, naturally 
representing relationships between entities [3]. Voronoi diagrams 
can be computed for point data (e.g. houses), segment data (e.g. 
roads), and areal data (e.g. lakes) [10]. Note that we use all these 
data-types in our experiments (see Section 5).  
Voronoi diagrams have been used in the domain of computer 
geometry [10]. With the aid of Voronoi diagrams, entities of a 
single type were used for clustering [8], and outlier detection [1]. 
As opposed to having only a single entity-type, [3] used Voronoi 
diagrams for finding spatial association rules for multiple entity-
types. However, though the dataset contained multiple entity-
types, the Voronoi diagram itself was created as if all entity-types 
were the same. This does not take advantage of the fact that the 
entity-types are of different characteristics, and creates a 
neighbourhood structure that connects adjacent entities only. 
A definition is required that creates meaningful neighbourhood 
relationships between multiple types of entities in spatial data, 
while preserving the importance of different types. People tend to 
go to the closest mall, food-store, hospital or airport, and the 
definition needs to take advantage of this. Based on this idea, for 
each entity-type, we construct a different neighbourhood structure 
using Voronoi diagrams. This is defined as follows: 

DEFINITION 1. (Voronoi Neighbourhood) Two entities, et,q  and 
es,r, are neighbours iff: 
• et,q intersects the Voronoi cell of es,r or es,r

 intersects the 
Voronoi cell of et,q, and et,q and es,r are different entity types, 
i.e.: t ≠ s, or, 

• the Voronoi cells of et,q and es,r are adjacent, and et,q and es,r 
are of the same type, i.e.: t = s. 

This implies that entities close to et,q have the most influence on 
et,q, which is consistent with Tobler’s First Law of Geography. 
The proposed approach cannot, and purposely does not, find 

Malls Roads Houses Owner
ID ID ID ID

# Employees # Lanes Size Name
# Managers Type Value Age

Profitable (label) Speed Limit Income Gender
SHAPE SHAPE SHAPE   

Figure 1: Sample database schema Figure 2: Buffer Zones for Malls 



patterns at arbitrary proximities since it makes the assumption that 
patterns that do not appear in close proximity (that is, connected 
by a neighbour literal) are not interesting. The Voronoi 
partitioning is completely data-driven and does not rely on any 
domain knowledge of the user. Thus the proximity for each entity 
type is derived from the distribution and number of entities of that 
entity type. For regions with lots of houses, for example, the 
proximity will be small; however for entity types with only few 
entities, such as airports or hospitals, the proximity will be very 
large. This creates a very natural concept of neighbourhood as, for 
example, each house is a neighbour to their closest malls, and 
each mall is a neighbour to other nearby malls (Figure 5). 

3. MR RULES FOR SPATIAL MINING 
To learn classification rules on a spatial dataset S, a target entity 
type τ and a class label from τ are selected by the user. Each entity 
in τ, called a target entity, has exactly one class label assigned. 
The goal of classification is to find rules that predict which class a 
target entity belongs to, given its own location, feature values, 
relationships to other entities, their locations and features. The 
entities of τ can either be interrelated to other entities also in τ or 
related to entities of other types. In instances when they are 
interrelated, the class label may depend on other entities of the 
same type and their class labels [19].  

3.1 Preliminaries 
As customary in Multi-Relational Data Mining, we will use first 
order logic (FOL) clauses [5] to represent classification rules. In 
FOL, entities are represented by constants, and comparisons of 
terms to constants are expressed by literals, which make up rules: 

DEFINITION 2. Terms are constants and variables. 

DEFINITION 3. A literal is a mapping of terms to a Boolean value, 
or a comparison θ of a term to a constant, where θ ∈{=,<,≤,>,≥}. 

DEFINITION 4. A classification rule is of the form L0 ← L1 ∧ L2 ∧ 
… ∧ Ln. Where each Li is a literal, and L0 specifies a class-label.  

The literals are implicitly existentially quantified. As an example: 
R1:  profitable(M, ‘yes’) ← mall(M), neighbour(M, H), 

house(H), income(H, I), I > 100,000 
states that “a mall is profitable if there exists a neighbouring 
house with income greater than $100,000”. Here house H is 
implicitly existentially quantified. mall(M) is derived from entity 
table mall, neighbour denotes a relationship between mall and 
house, and income is a feature of house. The rule requires at least 

one house, but it is likely that most malls have at least one 
neighbouring house with income greater than $100,000. 
Therefore, R1 is relatively weak. What could help is determining 
how many such houses are neighbours.  
With MR and spatial data, any single entity in ti can be related to 
multiple other entities in tj. To describe the feature values of these 
related entities, aggregation functions can be used. Chelghoum et 
al. [6] present a pre-processing technique in which a separate 
table is created to summarize the relationships between ti and tj. 
The drawback is that as the rule is being built, a condition could 
be placed on some feature of ti (for example size(H, S), S = 
‘large’), which would invalidate the pre-aggregated values. 
Furthermore, there are a large number of aggregations, which 
typically yields a table of considerable size [11, 21]. The 
aggregations presented in this paper could in theory also be 
applied as a pre-processing step, but then would suffer from these 
same limitations. In order not to be limited, features must be 
aggregated during the literal search and not a priori. 

3.2 Single and Multi-Feature Aggregation 
Recently, FOL has been extended to include aggregation using 
functions involving single [11, 21] and multiple [9] features: 

DEFINITION 5 A single-feature aggregation (SFA) function maps 
a bag of elements from the domain of a feature to a single value 
from another (possibly different) domain. 

DEFINITION 6 A single-feature aggregation literal has the form 
Agg(input, {conditions}, result) where input is a variable 
specifying the bag of feature values to be aggregated by Agg, 
constrained by conditions, and result is an output variable 
referencing the result of the aggregation. 

DEFINITION 7. A multi-feature aggregation (MFA) function 
maps multiple lists of elements from the domains of the features to 
a single value of another domain. 

DEFINITION 8. A multi-feature aggregation literal has the form 
Agg({input1, input2, …, inputi}, {conditions}, result) where input 
specifies lists of corresponding feature values aggregated and 
constrained by conditions. result is the output variable of the 
MFA function corresponding to Agg. 

Single-feature aggregations include functions such as count. 
Multiple features can also create literals by applying functions 
like correlation and t-test. The exact functions available depend 
on the type of feature(s) being aggregated. A comprehensive list 
of aggregations used in the literature is presented in [9]. 

 
a) around a city 

 
b) around a house 

 
c) around a province   

Figure 3: 3 km buffer zone around different entity types Figure 4: Varying density 
buffer zones 

Figure 5: Voronoi neighbourhood 
definition (shadings represent roads) 



As an example, using these constructs, we can capture average 
value and correlation between income and size of houses yielding 
R2: profitable(M, ‘yes’) ← mall(M),  

AVG(V,{neighbour(M, H), house(H), value(H, V)}, A),  
CORR({I, S}, {neighbour(M, H), house(H),  
      income(H, I), size(H, S)}, C), A > 100,000, C < 0 

With R2 it is possible to express that “a mall is profitable if, for 
neighbouring houses, the average value is greater than $100,000 
while the house-hold income and size of house are negatively 
correlated”. This rule implies that higher income earners live in 
smaller houses, leading to a possible higher disposable income. 

3.3 Spatial Features 
Spatial data is unique from non-spatial data in that it has implicit 
features, such as location or size, to be derived from the polygon 
associated with the entity. Some simple spatial features (Figure 6) 
have been used in the literature [2, 17], but are not appropriate in 
describing entities like road-segments or parks (the perimeter of 
‘Highway 1’ is not useful). To increase the expressiveness of the 
language and measure interesting properties of 2D entities, a 
comprehensive and appropriate independent set of features needs 
to be introduced (Figure 7) using spatial features: 

DEFINITION 9. A spatial function, with at least 1 parameter, 
returns a calculated property for the input(s).  

DEFINITION  10. A spatial feature is a spatial function applied to 
a spatial variable. It describes some property of the input entity 
and has the form SpatFeat(input). A condition and a threshold 
could also be applied. 

Using this construct, different spatial functions from any domain 
can easily be incorporated into the multi-relational rule-learning 
process. For example, catchment_area(M) denotes the area of the 
Voronoi cell that mall M is in, motivated by research in marketing 
[14]. This is defined as the area and population from which some 
entity (mall for example) attracts customers. Since spatial data, by 
default, does not contain explicit relationships, these need to be 
expressed and are added to FOL as spatial literals: 

DEFINITION 11. A spatial literal represents the relationship 
between two spatial entities. It has the form SpatLit(input1, 
input2) or SpatLit(input1, input2) θ v, depending on whether a 
comparison and threshold are applicable and used. 

DEFINITION 12. A neighbour literal is a special spatial literal 
representing the existence of a relationship between two spatial 
entities, as defined by a neighbourhood definition. It has the form 
neighbour(input1, input2).  

For example, house(H) and mall(M) can be connected with spatial 
literal neighbour(H, M). The literal neighbour(H,M) was created 

because, according to the neighbourhood definition, such as the 
buffer-zone or Voronoi neighbourhood, there is a  relationship 
between H and M. Some spatial literals have already been 
explored [7], but a few critical additional spatial literals (Figure 8) 
need to be added to take advantage of the extra information 
available due to the use of Voronoi diagrams.  

3.4 Spatial Aggregation 
Since, in general, spatial data contains a lot of entities belonging 
to the same type, the effect of a single entity becomes relatively 
limited. Aggregation-based methods [21, 11, 9] address this 
problem, as described in the previous sections. However, applying 
existing (non-spatial) methods to spatial data might yield 
unreliable results. As an example, regression analysis does not 
adjust for spatial dependency and thus can have unreliable 
parameter estimates and significance tests [13]. Analogous to the 
format of multi-feature aggregation literals, the following spatial 
aggregation literals are added to the language: 

DEFINITION 13. A spatial aggregation (SA) literal has the form 
Agg({input1, input2, …, inputi}, {conditions}, result) where i ≥ 1 
and input specifies the lists of corresponding feature values 
aggregated and constrained by conditions. result references the 
result of the aggregate function corresponding to Agg.  

Figure 9 presents three spatial aggregation literals incorporated in 
our framework. They represent the spatial statistics functions most 
commonly used in the literature [12]. Spatial trends (e.g. trend) 
describe the correlation of a (non-)spatial feature-value f and the 
distance d away from a central entity. If d were replaced with 
another, non-spatial, feature, this measure is equivalent to 
correlation. Spatial trend has a domain of [-1,1] with the value 
denoting the direction of linear relationship (for example, -1 
meaning f decreases as d increases).  
Spatial autocorrelation (autocorrelation) measures changes in f 
with respect to the values of f of the neighbouring entities. Since 
the non-spatial aggregate function SUM can be misleading due to 
the effect of the different sizes of the neighbourhoods, 
area_adjusted_mean yields a spatially-averaged value. For 
example, pollution level for a factory is not an absolute number 
but a per km2 value, i.e. it has been adjusted for the area it covers. 
As an example, using the literal trend() and a condition “result < 
0”, the rule can now capture a relationship of decreasing income 
and increasing distance relative to a central mall:  
R4: profitable(M, ‘yes’) ← mall(M),  

TREND({I, D}, {neighbour(M, H), house(H), 
         income(H, I), distance(M, H, D)}, S), S < 0 

This rule can be used to maximize the profit of a mall by 
advertising more to the close, high income, houses. Further, 
investors considering locations for future malls can place malls 
close to high income neighbourhoods. 

Spatial Features Spatial Literals  Spatial Aggregation Literals  
- length - width - start_y - end_x - voronoi_neighbour - trend 
- perimeter - end_y - start_x - road_distance - autocorrelation 
- area - centroid_x - centroid_y - travel_time - area_adjusted_mean 
- x - y - catchment_area   
Figure 6: Existing spatial 

features  
Figure 7: Novel spatial 

features  
Figure 8: Novel spatial 

literals  
Figure 9: Spatial Aggregation 

Literals  



4. RULE LEARNING 
Our MR-based spatial classification algorithm, UnMASC 
(Unified Multifeature Aggregation based Spatial Classifier), is 
based on the idea of the sequential covering algorithm [22]. The 
goal is to learn classification rules on entities with known class-
labels (training entities), then use those rules to predict the label 
for new entities (testing entities). The learning and prediction is 
based on the entity’s own feature values, (spatial) relationships to 
other entities and their feature values. The specific relationships 
materialized are given by the neighbourhood definition (such as 
buffer-zone or Voronoi neighbourhood) which is specified a 
priori. Spatial calculations are performed in the DBMS. We focus 
on the two-class classification problem. 
In current algorithms, such as [22], the search space is explored 
serially as each evaluation takes place one after the other (Section 
4.1). With multi-processor machines available today, this method 
of evaluation is inefficient since it is unable to exploit the 
available processing power. Our algorithm (Section 4.2) is able to 
perform this search process in an optimized parallelized fashion. 
We describe this parallelization, and the optimizations done to 
further improve the benefits of parallelization (Section 4.3). 

4.1 Preliminaries 
The learning of rules is done by generating one rule at a time and 
refining them incrementally by adding literals until a termination 
condition applies (for example Minimum Support). Once a rule is 
finalised, the covered entities are removed from the training set, 
and a search for another rule starts. The rule-learning process ends 
when there are not enough entities in the training set for a rule. 
When refining a rule, the rule is extended by at least one literal at 
a time. If the entity type t in the literal being added is already 
referenced in the rule, then a feature literal is added with a new 
condition on some feature(s) of t. If the entity type in the literal 
has not been referenced in the rule, then up to three literals are 

added: an Entity Literal referencing t, a Relationship Literal 
denoting the relationship of t to an entity type already in the rule, 
and possibly a Feature Literal with a condition on a feature of t.  
Each new rule references the target entity type τ. When searching 
for the next best literal, each entity type t that shares a (spatial) 
relationship with τ is searched. The search finds the feature, 
aggregation, constant value and comparison operator that yields 
the highest FOILGain [16], which is then added to the rule as a 
new literal. Note that depending on the neighbourhood definition, 
entities of type t could be neighbours to other entities of type t. 
For non-empty rules the search is more complicated since any 
entity type with a relationship to another entity type referenced by 
the rule must be evaluated. The more entity types referenced, the 
more relationships there are, and the larger the number of 
candidate literals that need to be evaluated. 

4.2 The UnMASC Algorithm 
When evaluating refinements of the current rule, the entity types 
that are considered include each entity type (neigEntity) that 
neighbours currently referenced entity types. The set of 
neigEntity's is called neigEntitySet. For each neigEntity, the 
FOILGain of all aggregations applied to their corresponding 
feature(s) is evaluated independently of the other evaluations. The 
decision of which literal to add to the rule is being made only after 
the FOILGain has been evaluated for all neigEntity’s. This 
indicates that the evaluation of multiple neigEntity's can be 
performed in parallel. UnMASC takes advantage of this by 
performing multiple literal searches simultaneously (see Section 
4.3). To do this, UnMASC is split into two parts, RuleLearner 
(Section 4.2.1) and LiteralEvaluator (Section 4.2.2). RuleLearner 
is responsible for determining which entities to search, tracking 
rules and the target entity IDs satisfied by the rules. RuleLearner 
executes multiple instances of LiteralEvaluator which determine 
the best literal, given a specific set of entities to search.   

Algorithm 1  RuleLearner (minSupp, DB, TargetEntityType, TargetLabel) 
1: RuleSet ← ∅ 
2: EntityIDs ← IDs of entities of type TargetEntityType 
3: UncoveredEntityIDs  ← EntityIDs 
4:  while |UncoveredEntityIDs| > |EntityIDs| * minSupp        //start a new rule 
5: Rule ← empty rule 
6: RuleEntities ← EntityIDs covered by Rule 
7:   while |RuleEntities| > |EntityIDs| * minSupp  //search for literal 
8:    neigEntitySet ← ∅ 
9:     for each neigEntity with relationship to entity-type referenced in Rule 
10:      neigEntitySet ← neigEntitySet + neigEntity 
11:    while |neigEntitySet| > 0 
12:     while all threads busy 
13:      WAIT 
14: Start Thread [ LiteralEvaluator(Rule, neigEntity, RuleEntities) ] 
15: neigEntitySet ← neigEntitySet - neigEntity 
16: BestLiteral ← result with highest FG value from all results 
17: Update Rule by adding BestLiteral 
18:      RuleEntities ← remove from  RuleEntities entities covered by BestLiteral 
19: UncoveredEntityIDs ← remove from  UncoveredEntityIDs entities covered by Rule 
20:   RuleSet ← RuleSet ∪ {Rule} 
21: return RuleSet 

Figure 10: UnMASC RuleLearner 



4.2.1 RuleLearner 
Initially, the rule-learning starts with an empty rule R, with the 
target-entity type τ given (Figure 10 – line 5). RuleLearner 
assembles the set neigEntitySet of neigEntity that require 
evaluation: if R is empty, then all entity types that have a 
neighbourhood relationship with τ are added into the set. 
Otherwise any entity type with a neighbourhood relationship with 
any referenced entity type in R is added to the set (lines 8-10). 
Once neigEntitySet is complete, RuleLearner will start to evaluate 
each. It does so by calling LiteralEvaluator, which, given the 
current rule and target entity IDs that satisfy the rule thus far, 
finds and returns the best literal (lines 11-15). A queuing system 
allows the number of simultaneous threads of LiteralEvaluator to 
be limited by the number of CPUs present. As a LiteralEvaluator 
completes a task, a new neigEntity is assigned to it.  
During the literal search, once all neighbouring entity types are 
evaluated, the one that produces the highest FOILGain is selected 
and, if the resulting rule satisfies the minimum support criteria, is 
added to the rule (lines 16-18). If none of the refinements of a rule 
achieves the minimum support, then the current rule is complete. 
The entities in the training dataset which satisfy the rule are 
removed, and a new rule is started (lines 19-20). 

4.2.2 LiteralEvaluator 
LiteralEvaluator (Figure 11) returns the best literal and 
FOILGain, given a neigEntity and training entities not covered by 
any previous rule. First LiteralEvaluator retrieves the required 
dataset for analysis (lines 2-3), looking at each feature of 
neigEntity, and applying all appropriate aggregation functions 
(lines 4-7). For each aggregated feature, a second feature is 
selected and multi-feature aggregation is performed (lines 8-11). 
If neigEntity is a spatial entity, then the spatial features are 
extracted and spatial aggregation is performed (lines 12-17). Each 
aggregation result is searched for the best comparison operator 
and value with the highest FOILGain. The aggregation, feature 
and threshold with the highest FOILGain are returned (line 21).  

4.3 Parallel Literal Search 
RuleLearner creates multiple LiteralEvaluator threads 
simultaneously, each responsible for analyzing a different 
neighbourhood relationship. The number of simultaneous 
evaluations varies but is limited by the number of CPUs, so each 
runs on a dedicated CPU. If the number of possible 
neighbourhood relationships exceeds the available CPUs, then 
they are placed into a queue and are evaluated when a CPU 
becomes available. This setup is illustrated in Figure 12.  
The different LiteralEvaluator threads all share the same main 
memory, although each thread has its own independent portion 
since each works with a different subset of the data. For each 
thread, the relevant entity-types, entities and features are retrieved 
from the database and loaded into main memory. Once a thread is 
finished with its own task, the memory is released, the result of 
the thread stored with the other results, and the required dataset 
for the next queued task is retrieved (Figure 12 - Time 2). The 
dataset required for each thread is computed by a join of some 
database tables and the time required for the retrieval is negligible 
since no aggregations are performed during retrieval. 
There are however considerable differences between the sizes of 
the datasets used by different threads. For example, using the 
tasks from Figure 12 Time 1, the cost for evaluating {Malls} is 
expected to be relatively small since there are only a few malls in 
a city and no aggregations are involved (since there's only a single 
entity-type). {Malls, Houses} however is expected to incur much 
higher cost since there are many houses in a city, and the 
evaluation requires that houses be aggregated over their 
neighbouring malls. {Malls, Roads} incurs a cost that is between 
the other two threads since the number of roads is likely to be 
smaller than the number of houses in a typical city. 
Since the cost for each task varies, sometimes greatly, it is 
possible that a very costly task is executed last, in which case all 
but one threads are idle and the benefits of parallelization are 
invalidated. The risk of this depends only on the variability of the 
number of entities of each entity-type: the larger the variability, 

Algorithm 2 LiteralEvaluator(rule, neigEntity, entities) 
1: FG′ = 0 
2: determine relationships between entities covered by rule and entities in neigEntity 
3:  retrieve corresponding dataset from DB 
4:  for all currFeat1 of neigEntity 
5:   for each singleAgg from all single-feature aggregation functions (incl. existential) 
6:    FG ← Calculate FOILGain for currFeat1 using singleAgg 
7:     if FG′ < FG then [currFeat1′, currFeat2′, Aggr′, FG′] = [currFeat1, , singleAgg, FG] 
8:    for all currFeat2 of neigEntity 
9:     for each multiAgg from all multi-feature aggregation functions 
10:      FG ← Calculate FOILGain for <currFeat1, currFeat2> using multiAgg 
11:     if FG’ < FG then [currFeat1′, currFeat2′, Aggr′, FG′] = [currFeat1, currFeat2, multiAgg, FG] 
12:   if neigEntity is a spatial entity 
13:    extract spatial features 
14:    for each spatial feature spatFeat of neigEntity 
15:     for each spatAgg from all spatial aggregation functions 
16:      FG ← Calculate FOILGain for <currFeat1, spatFeat> using spatAgg 
17:      if FG′ < FG then [currFeat1′, currFeat2′, Aggr′, FG′] = [currFeat1, spatFeat, spatAgg, FG] 
18:   candLit ← [neigEntity, currFeat1′, currFeat2′, Aggr′, FG′] 
19: return candLit 

Figure 11: UnMASC LiteralEvaluator (to denote best solution, an ′ is used) 



the larger the differences in task-sizes. If the cost for each task can 
be estimated well enough, the queue can be reprioritized to avoid 
this scenario. Since the size of the task is unknown a priori, we 
estimate this based on the number of entities of each type and the 
number of relationships between them. Then we rearrange the 
tasks in the queue such that the largest tasks get executed first. 
Each search is made up of a permutation of n entity types which 
can be denoted as {t1, …,tk–1, tk,…, tn}, where t1 = τ. Each entity 
type tk–1 has, on average, | tk-1 tk | / | tk-1 | neighbours of type tk, 
where | tk-1 tk | denotes the number of relationships between 
all entities of type tk–1 and tk, and | tk-1 | denotes the number of 
entities of type tk-1. For example, assume there are 10 malls (| tk-1 |) 
and in total 100 neighbourhood relationships between malls and 
houses (| tk-1 tk |), then this implies that, on average, there are 
100/10 = 10 neighbouring houses per mall. Thus the total number 
of relationships between the target entity-type (t1) and the entity-
type being searched (tn) can be estimated by  
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Multi-feature and spatial aggregation is then performed on the 
features (f) of the entity-type that is searched (tn) by choosing two 
features to aggregate, which can be done in !

2!( 2)!2
f

ff C −=  

ways. Thus the total cost of a specific task is estimated by 

1
1 n

2 1

!total_cost(t ,t )
2( 2)!

n
k k

k
k k

t tft
f t

−

= −

=
− ∏

  

5. EXPERIMENTS 
As a result of collaboration with the Criminology Department at 
Simon Fraser University (SFU), real-world crime data was 
available with location, time, and type of calls for service for the 
Royal Canadian Mounted Police (RCMP) in British Columbia 
(BC) between August 1, 2001 and August 1, 2006. Also available 
was the British Columbia Assessment Authority (BCAA) dataset 
containing the property values of all plots of land within BC. The 

city of Burnaby, BC, was selected as the test dataset. As a pre-
processing step, each plot was assigned a counter, denoting the 
number of burglaries which have occurred at that location. This 
count was then used to create a Boolean class-label (if count>0 
then burglarized, else not burglarized). The entire dataset 
contains 22 different entity types, with each type containing from 
3 to 34,000 entities, an average of 3,100 entities per type. 
UnMASC was evaluated using three neighbourhood definitions. 
With the first alternative, the neighbours were pre-materialized 
using buffer zones of variable size, where the radius is given by: 

( ) / { ( )}radius area Burnaby count EntityTypeπ= ×  

This dataset contained 2.8 million spatial relationships between 
entities. The second dataset was pre-materialized using the 
Voronoi neighbourhoods proposed in this paper, with 3.8 million 
spatial relationships. In order to evaluate the importance of the 
neighbourhood, a third was created which contained only the 
target entity-type. Note that the third alternative only uses 
information on the target entity type and since no neighbouring 
entity types are evaluated, the search-space is much smaller. All 
three methods were tested and compared for their impact on 
precision, recall and accuracy. Measurements were taken for the 
rules learnt on the target class (burglarized). 
Experiments were run using an implementation of the UnMASC 
algorithm running on an 8-CPU Windows server tied to a backend 
database with DB/2 v9.1 Spatial Extender. The operating system 
was allowed to set the CPU-affinity of each instance, which meant 
no two instances were running on the same CPU simultaneously. 
5-fold cross-validation was performed. To evaluate the 
effectiveness of the parallelization of UnMASC, classification was 
performed in both parallel (6 threads) and serial (1 thread). Note 
that for the dataset with only the target entity-type, since there is 
only a single type, producing only a single task for each literal 
search, this dataset could not be evaluated in a parallel fashion. 

5.1 Burglaries of Commercial Properties 
For our first experiment, the set of 2812 commercial properties 
were selected as the target entities. Commercial properties where 

 
Figure 12: Search Process Example 



burglaries have occurred were chosen as the target-label, with 
33% of the properties falling under this label within the 5-year 
period considered. The Voronoi neighbourhood definition had 
higher precision while having lower recall. Accuracy was higher. 
The parallel version of UnMASC outperformed the serial version 
by a factor of about 5.4 (Figure 13). Rules built only on the target 
entity-type, without any neighbouring entities, performed barely 
better than the trivial classifier. This clearly illustrates the 
significance the neighbourhood plays in spatial classification. 
It is interesting to note that there was a significant difference 
between buffer zones and Voronoi neighbourhoods in the number 
of neighbours each commercial property has. On average, for each 
commercial property, the number of neighbouring commercial 
properties using buffer zones was 20 times that of Voronoi 
neighbourhoods, while the number of neighbouring non-
commercial properties was only 0.4 times. This clearly indicates 
that buffer zone rules were built more on neighbouring 
commercial properties and less on non-commercial properties, 
than the rules built on Voronoi neighbourhoods. Due to the use of 
zoning for city planning in Canada, commercial properties (as 
well as other property types) tend to be clustered, which the buffer 
zone is unable to bypass and hence precision of the resulting rules 
suffers. This was also the reason for the large difference in run-
times: when performing the aggregations, the buffer zone had to 
aggregate much fewer values than the Voronoi approach, resulting 
in a reduction in runtime (and precision). Note that this difference 
in runtime was not seen in the next set of experiments. 

5.2 Burglaries of Industrial Properties 
As a second classification task, 453 industrial properties were 
selected for rule learning with the 16% of properties which were 
burglarized selected as the target. Precision and recall for Voronoi 
neighbourhoods were 57% and 69.4% respectively, beating the 
buffer zone by 4% and the trivial classifier by 3%. Both 
neighbourhood approaches had comparable runtimes, in both 
parallel and serial mode, with the parallel version of UnMASC 
outperforming the serial version by, on average, a factor of 5.1 
(Figure 13). Rules built only on the target entity-type performed 
somewhat better than the trivial classifier but significantly worse 
than rules built with neighbouring entity-types. 

5.3 Burglaries of High Rise Properties 
As a third classification task, 1036 high-rise properties were 
selected for learning rules with the 44.3% of properties which 
were burglarized selected as the target. Precision and recall for 

Voronoi neighbourhoods were 85.2% and 87.8% respectively, 
beating the buffer zone by a small margin, and the trivial 
classifier’s accuracy (55.7%) by 32%. Both neighbourhood 
approaches had comparable runtimes, with the parallel version of 
UnMASC outperforming the serial version by, on average, a 
factor of 5.21 (Figure 13). Similar to the previous experiments, 
including neighbouring entity-types provided a significant 
increase in precision and accuracy, demonstrating again the 
importance of the role of neighbourhood. 

5.4 Rule Analysis 
R7 (Figure 14) illustrates a sample rule that was found. It denotes 
that a commercial property (L1) is likely to be burglarized if the 
median building-value of neighbouring industrial properties is 
worth less than $445,000 (L2) and has neighbouring parks with 
areas less than 14,400m2 (L4). The commercial property also has 
neighbouring industrial properties with a spatial trend where 
duplexes are cheaper the further east they are, and more expensive 
the further west they are. This could indicate that the commercial 
property is in a relatively inexpensive industrial neighbourhood, 
acting as an attractor to crime, while neighbour to parks which 
could be a source of people inclined to commit crimes.  
Another interesting sample rule involving high-rises, R8 (Figure 
14), was discovered. It states that a high-rise is likely to be 
burglarized if it is worth more than $2.2 million (L1), the average 
distance to a commercial property is less than 302 m (L2) and, for 
neighbouring commercial properties (L3), neighbouring parks 
tend to be small (L4), and duplexes tend to be worth at least 
$351,500. This rule seems to indicate that expensive high-rises 
near high-traffic areas are going to see more burglaries as opposed 
to ones in areas without traffic. 

6. CONCLUSION 
In this paper a multi-relational approach to spatial classification 
was presented and novel challenges identified. A Voronoi-
diagram based neighbourhood definition was proposed to make 
explicit the spatial relationships. In order to handle spatial 
features and aggregations in First Order Logic, a formal set of 
additions to the framework was introduced. A scalable 
implementation was presented, capable of evaluating multiple 
literal candidates simultaneously, thus significantly decreasing the 
runtime required for rule-learning. Experiments on a real-world 
spatial dataset showed substantial gains in precision, recall and 
accuracy compared to existing approaches for neighbourhood 
definitions. Experimentation without including neighbourhood 

Target Type 
Class 

Distribution Neighbourhood Precision Recall Accuracy 
Runtime 
(Parallel) 

Runtime 
(Serial) 

Speed-
up 

         None 41.6% 93.7% 54.3%  0h:37m  
Buffer Zone 56.4% 92.5% 73.8% 3h:40m 19h:32m 5.32x Commercial 931+ 1881- 

Voronoi 65.9% 86.7% 80.6% 7h:56m 43h:05m 5.44x 
          None 19.8% 77.1% 45.2%  0h:13m  

Buffer Zone 53.1% 57.6% 84.1% 4h:05m 20h:25m 5.00x Industrial 73+ 380- 
Voronoi 57.0% 69.4% 86.3% 3h:47m 19h:32m 5.16x 

          None 57.1% 97.6% 66.4%  0h:4m  
Buffer Zone 83.4% 87.7% 86.3% 3h:18m 17h:06m 5.18x High Rises 459+ 577- 

Voronoi 85.2% 87.8% 87.7% 4h:31m 23h:37m 5.23x 
         

 
Figure 13: Burglaries of Commercial, Industrial and High-Rise Housing Properties 



information resulted in low accuracy and precision, demonstrating 
the importance of selecting the proper neighbourhood definition. 
Anecdotal evidence was provided to illustrate the meaningfulness 
of the rules discovered and the expressiveness of the language. 
For future work, we plan to optimize the parallelization by 
looking for ways to break each job into smaller pieces, perhaps 
where the literal is not searched for in an entity-type, but only a 
feature of an entity-type. Secondly, it would be interesting to 
incorporate the temporal aspects into rule-learning to detect, for 
example, temporal trends and how changes over time in 
neighbourhood composition can lead to better predictions. 

7. REFERENCES 
[1] Adam, N. R; Janeja, V. P.; Atluri, V.: “Neighborhood based 

detection of anomalies in high dimensional spatio-temporal 
sensor datasets”, In Proceedings of the ACM symposium on 
Applied computing (2004) 

[2] Appice, A.; Ceci, M.; Lanza, A.: “Discovery of spatial 
association rules in geo-referenced census data: a relational 
mining approach”, In Proceedings of Intelligent Data 
Analysis (2003) 

[3]  Bembenik, R.; Rybinski, H.: “Mining Spatial Association 
Rules with no Distance Parameter”, Advances in Soft 
Computing, Vol. 35 (2006) 

[4] Ceci, M.; Appice, A.; Malerba, D.: “Spatial Associative 
Classification at Different Levels of Granularity: A 
Probabilistic Approach”, Lecture Notes in Computer 
Science, Volume 3202 (2004) 

[5] Ceri, S; Gottlob, G; Tanca, L.: “Logic programming and 
databases”, Springer-Verlag, (1990) 

[6] Chelghoum, N., Zeitouni K.: “Spatial Data Mining 
Implementation - Alternatives And Performances”, GeoInfo, 
pp 127-153 (2004) 

[7] Egenhofer, M.J.: “Reasoning about Binary Topological 
Relations”, In Proceedings of SSD, (1991) 

[8] Estivill-Castro, V.; Lee, I.: “Argument free clustering for 
large spatial point-data sets via boundary extraction from 
Delaunay Diagram”, Computers, Environment and Urban 
Systems, Vol. 26, No 4, pp. 315-334 (July 2002 ) 

[9] Frank, R., Moser, F., Ester, M.: “A Method for Multi-
Relational Classification Using Single and Multi-Feature 
Aggregation Functions”, In Proceedings of PKDD (2007) 

[10] Hoff, K.; Culver, T.; Keyser, J.; Lin, M.; Manocha, D.:“Fast 
computation of generalized Voronoi diagrams using graphics 
hardware”, In Proceedings of SIGGRAPH (1999) 

[11] Knobbe, A.J.; Siebes, A.; Marseille, B.: “Involving 
Aggregate Functions in Multi-Relational Search”, In 
Proceedings of PKDD (2002) 

[12] Longley, P.A.; Goodchild, M.F.; Maguire, D.J; Rhind, D.W.: 
“Geographical Information Systems: Principles, Techniques, 
Applications and Management”, Wiley, 2nd Edition (1999) 

[13] Miller, H. J.: “Tobler's First Law and spatial analysis”, 
Annals of the Association of American Geographers, 94. 
(2004) 

[14] Ohyama ,T.: “Some Voronoi diagrams that consider 
consumer behavior analysis”, In Industrial Mathematics of 
the Japan Journal of Industrial and Applied Mathematics 
(2005)  

[15] Papadias, D., Theodoridis, Y.: “Spatial Relations, Minimum 
Bounding Rectangles, and Spatial Data Structures”, 
International Journal of Geographic Information Science 
Volume 11, Issue 2 (1997) 

[16] Quinlan, J. R., Cameron-Jones, R. M.: FOIL – A midterm 
report, In Proceedings of ECML (1993) 

[17] Santos, M. Y.; Amaral L. A.: “Geo-spatial data mining in the 
analysis of a demographic database”, In Soft Computing - A 
Fusion of Foundations, Methodologies and Applications, 
Volume 9, Issue 5 (2005)  

[18] Schlossberg, M.: “GIS, The US Census And Neighbourhood 
Scale Analysis”, Planning, Practice & Research, Vol. 18, No. 
2–3 (2003)  

[19] Taskar, B., Segal, E., and Koller, D.: “Probabilistic 
classification and clustering in relational data”, In 
Proceedings IJCAI (2001) 

[20] Tobler, W.R.: “A computer movie simulating urban growth 
in the Detroit region”, In Economic Geography, Volume 46 
(1970) 

[21] Vens, C.; Van Assche, A.; Blockeel, H.; Dzeroski, S.: “First 
order random forests with complex aggregates”, In 
Proceedings of ILP (2004) 

[22] Yin, X.; Han J.; Yang J.; Yu, P.S.: “CrossMine: Efficient 
Classification Across Multiple Database Relations”, In 
Proceedings of ICDE (2004) 

 

R7: burglarized(C, ‘yes’) ← commercial(C),  
MEDIAN(B1, {industrial(I), neighbour(C,I), building_value(I,B1)}, M), M<445,000 
industrial(I), neighbour(C,I), TREND({B2, X}, {duplex(D), neighbour(I,D),  
 building_value(D, B2), x_coord(D,X)}, S), S>0.798 
MAX(A, {park(P), neighbour(C,P), area(P,A)}, N), N<14,400 
 

L1 
L2 
L3 
 
L4 

R8: burglarized(H, ‘yes’) ← 
 
highrise(H),  building_value(H,V), V>2,160,000 
AVG(D1, {commercial(C), neighbour(H,C), distance(H,C,D1)}, A), A<302 
commercial(C), neighbour(H,C) 
MEDIAN(W, {park(P), neighbour(C,P), width(P)}, M1), M1<122 
MEDIAN(X, {duplex(D), neighbour(C,D), land_value(D)}, M2), M2>351,500 

L1 
L2 
L3 
L4 
L5 

Figure 14: Sample rules discovered by UnMASC 


