
Maximally Informative k-Itemsets and their Efficient
Discovery

Arno J. Knobbe1,2, Eric K.Y. Ho1

1Kiminkii, P.O. box 171, NL-3990 DD, Houten, The Netherlands

2Utrecht University, P.O. box 80 089, NL-3508 TB Utrecht, The Netherlands
+31 30 253 99 67

a.knobbe@kiminkii.com, e.ho@kiminkii.com

ABSTRACT
In this paper we present a new approach to mining binary data.
We treat each binary feature (item) as a means of distinguishing
two sets of examples. Our interest is in selecting from the total set
of items an itemset of specified size, such that the database is
partitioned with as uniform a distribution over the parts as
possible. To achieve this goal, we propose the use of joint entropy
as a quality measure for itemsets, and refer to optimal itemsets of
cardinality k as maximally informative k-itemsets. We claim that
this approach maximises distinctive power, as well as minimises
redundancy within the feature set. A number of algorithms is
presented for computing optimal itemsets efficiently.

Categories and Subject Descriptors
F.2 Analysis of Algorithms and Problem Complexity. G.3
Probability and Statistics. H.1.1 Systems and Information Theory.
I.2.6 Learning

General Terms
Algorithms, Theory.

Keywords
Maximally informative k-itemsets, binary data, feature selection,
information theory, joint entropy, subgroup discovery.

1. INTRODUCTION
In this paper we present a novel class of regularities to be mined
from binary datasets. If we think of the binary features (items) in
such datasets as means of distinguishing examples within the
dataset from each other, we could wonder which features are best
at doing so. Furthermore, we could wonder whether some features
provide any meaningful and additional distinction, given a
number of the other features. In other words, we are interested in
selecting a small set of binary features that provides as good a
distinction of the examples as possible. A subset of binary
features that maximises the joint entropy of its features provides

exactly that notion. We will refer to such feature sets of
cardinality k as maximally informative k-itemsets (or miki’s).

As information theory dictates [6], the joint entropy of a set of k
binary features is optimal when the distribution of possible
combinations of binary values is uniform. In other words, the
database is partitioned into 2k parts of equal size. This happens if
all selected features are independent and each feature has a
probability of p(x = 1) = 0.5. A nice property of favouring sets
with high joint entropy is that features are only selected if they
provide distinctive power that is additional to the remaining
features. A feature may be distinctive in isolation (i.e. have an
entropy of 1 bit), but is of no use if this information is already
conveyed by the remaining features.

Although the definition of miki’s is fairly basic, they are of use in
a wide array of domains. The general applicability becomes
clearer if we interpret binary features in the most general sense:
any function D → {0, 1} that splits a database in two mutually
exclusive parts. This includes the obvious binary attributes
(items), but also subgroups or patterns (examples are either
covered by a pattern, or not). Furthermore, one can think of binary
classifiers as binary features. The following potential applications
explain our motivation for working on miki’s:

• Feature selection [7][10][15][22] in binary databases. A
considerable number of Data Mining techniques is
hindered by the presence of many attributes, either due to
the presence of irrelevant attributes, or for reasons of
efficiency. If we can select a small number of attributes,
while retaining most of the discriminative power, the
results of such techniques may be improved.

• Subgroup discovery [11][13][23]. Subgroup discovery
(whether supervised or unsupervised) typically produces
an abundance of interesting patterns that is very hard to
inspect manually. There may be considerable redundancy
because relevant subsets of the data may be described in
several (nearly) equivalent ways. Furthermore, some
patterns constitute logical combinations of two or more
alternative patterns reported by the subgroup discovery
algorithm. Selecting patterns by means of miki’s will
condense the original set of individually interesting
patterns to a manageable set of important findings.

• Propositionalisation in Multi-Relational Data Mining
(MRDM) [13][16][18]. An important task within
MRDM is the translation of multi-relational data to a
propositional format. The obvious application of this
operation is to allow the deployment of attribute-value

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD'06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008...$5.00.

learning systems that could otherwise not be used due to
the non-determinate nature of the data. The
transformation is typically run in an unsupervised setting,
and many binary features (each corresponding to a
discovered multi-relational pattern) are produced.
Without proper filtering, the resulting binary table will
contain too many redundant features.

Maximally informative k-itemsets have a number of features that
set them apart from frequent itemsets, which have been the
dominant class of models for mining binary data [1][8][24]. First
of all, miki’s are symmetric in their treatment of the values 0 and
1. The two values are merely seen as identifiers for the two
distinct groups. In fact, swapping these values in any of the
features considered has no effect on the computation. In many
applications, this symmetry is desirable. A symmetrical treatment
of 0 and 1 also implies that it makes sense to not just have a
minimum support threshold of the 1’s, as is the case in most
frequent itemset algorithms, but also on the 0’s (in a sense a
maximum support threshold for the 1’s). The use of a minimum
on the entropy replaces these two thresholds, as the entropy of a
feature decreases if either of the values becomes dominant.

The goals of frequent itemsets and miki’s are orthogonal in a
sense. Whereas frequent itemsets favour items that are positively
associated [1], miki’s aim at optimising the independence of items
within the miki. Frequent itemset mining is sensitive to items with
high support, because their addition to any frequent itemset has
little effect on the support. Such items are ignored when mining
for miki’s, because they are frequent and thus provide little
information, but also because internal correlation is minimised.

In this paper, we present some basic results concerning miki’s and
information theory (Section 2). More importantly, we introduce a
number of algorithms for computing miki’s (Section 3). We start
by describing four algorithms for computing exact miki’s. As the
number of candidate miki’s can be very large, efficiency is a
major concern. We start by considering an exhaustive algorithm,
and improve on that by applying a number of the observations
from Section 2. As the scale of the search space becomes
prohibitive with larger values of k, we also describe a greedy
algorithm that computes approximate miki’s efficiently, at a small
penalty for optimality.

In Section 4, we perform a series of experiments to demonstrate
the value of maximally informative k-itemsets, and to assess the
efficiency of the algorithms presented. We also empirically test
the error introduced by the greedy algorithm. The paper finishes
with related work and conclusions in Section 5 and 6.

2. PRELIMINARIES
In this section, we will provide definitions for basic concepts
related to maximally informative k-itemsets, and introduce a
number of useful properties. These properties will be exploited by
the algorithms introduced in the next section. In the remainder, we
will assume that we have a collection of items I. We will use
lowercase x1, x2,… to indicate items, and capitals X and Y to
indicate itemsets. We assume that we can obtain a probability
estimate p(x = a) by scanning the database associated with I, and
counting the relative number of occurrences of value a.

We start with a number of basic definitions and properties, based
on information theoretical notions presented in [6]. We begin by

defining the notion of joint entropy of an itemset, a measure for
the amount of information conveyed by the itemset. A maximally
informative k-itemset (or miki in short) is then simply the itemset
of specified cardinality that maximises this joint entropy. Joint
entropy is measured in bits.

Definition 1 (joint entropy). Suppose that X = {x1,…,xk} is an
itemset, and B = (b1,…,bk) ∈ {0,1}k is a tuple of binary values.
The joint entropy of X is defined as

�
∈

====−=
kB

kkkk bxbxpbxbxpXH
}1,0{

1111),,(lg),,()(��

Definition 2 (maximally informative k-itemset). Suppose that I
is a collection of n items. An itemset X ⊆ I of cardinality k is a
maximally informative k-itemset, iff for all itemsets Y ⊆ I of
cardinality k,

)()(XHYH ≤

Note that the joint entropy of an itemset increases as more items
are added to it. Because items are binary features, every item
provides at most 1 bit of additional information.

Proposition 1 (monotonicity of joint entropy). Suppose X and Y
are two itemsets such that X ⊆ Y. Then

)()(YHXH ≤

Proposition 2 (unit growth of joint entropy). Suppose X and Y
are two itemsets such that X ⊆ Y. Then

XYXHYH \)()(+≤

As Proposition 1 shows, the joint entropy is a non-decreasing
function of the number of items involved in the itemset. This
raises the issue of choosing a good value for the parameter k. In
theory larger values of k will give a better distinction between
examples. On the other hand, feature selection calls for small
numbers of items. In many cases, the right value of k will be
implied by the application. The problem is very similar to the
selection of the right number of clusters in clustering tasks, where
this number is often determined by considering increasing values,
and stopping when there is a clear drop in improvement. An
example of this is given in our experiments in Section 4.

Algorithms for computing miki’s of a desired cardinality k will
have to consider a large amount of candidate itemsets and
compute their joint entropy by scanning the database. Computing
the joint entropy of a given itemset essentially comes down to a
bucket sort [5] where each bucket corresponds to a cell in a
contingency table of k dimensions. This table scan can be
performed in O(kN), where N equals the number of records in the

database. In theory a total of ()n
k itemsets will have to be

considered. As N is typically large and therefore a table scan is an
expensive operation, it is important to have upper bounds on the
value of H(X) that are relatively cheap to compute. Such a bound
can then be used to discard candidates that are clearly not
maximal, without having to scan the data for verification. A
simple, moderately tight, upper bound can be obtained by
considering the entropy of the individual items in the itemset.

Proposition 3 (independence bound on joint entropy). Suppose
that X = {x1,…,xk} is an itemset. Then

�≤
i

ixHXH)()(

Although the proof (see [6]) of this proposition is non-trivial, and
involves among others Jensen’s inequality, the intuition behind it
is straightforward. Every item provides a certain amount of
information to the joint entropy. If all pairs of items are
independent, the joint entropy equals the sum of entropies.
However, if items are dependent, they share a certain amount of
information, which is ignored when simply adding the individual
entropies.

Note that, although our specific interest in this paper is with
binary features, Definitions 1, 2 and Proposition 3 can be easily
generalised to categorical features [6].

Example 1. Consider the following database consisting of four
items. Items A to C all have equal numbers of 1’s and 0’s, hence
H(A) = 1, H(B) = 1, H(C) = 1. H(D) = − �lg� − �lg� � 0.96.
The itemset {A, B, C} is a maximally informative k-itemset of
cardinality 3. Its joint entropy equals 2.5 bits which is less than
the 3 bits of information provided by the three items separately
(Proposition 3).

A B C D

1 1 1 0

1 1 0 0

1 1 1 0

1 0 0 0

0 1 1 0

0 0 0 1

0 0 1 1

0 0 0 1

The fact that mutual information between items is ignored by
Proposition 3 suggests that we can obtain a potentially tighter
bound by grouping items that share a considerable amount of
information, and taking the joint entropy within this group rather
than the sum of the entropies. This amounts to treating each such
group as a single categorical feature with all binary combinations
as possible values. Joint entropies for such (small) subsets of
items can for example be obtained cheaply by pre-computing and
storing the results in a datastructure for future reference. We
continue by presenting a number of results that will be exploited
in algorithms presented in the next section. We show that
grouping items within the itemset can be used to compute upper
bounds for H(X) that are potentially tighter than the independence
bound (Proposition 3). Furthermore, bounds become tighter as
more items are grouped together.

Definition 3 (partition of itemset). Suppose that X = {x1,…,xk} is
an itemset. A partition of X is a set of itemsets P = {B1,…,Bm}
such that

,:, ∅=∩�≠∀ ji BBjiji

2,:,
1

≥∅≠∀=
=

mBiXB i

m

i
i�

The itemsets Bi are known as the blocks of P.

Definition 4 (joint entropy of partition). Suppose that P =
{B1,…,Bm} is a partition of an itemset. The joint entropy of P is
defined as

�=
i

iBHPH)()(

Proposition 4 (partitioned bound on joint entropy). Suppose
that P = {B1,…,Bm} is a partition of an itemset X. Then

)()(PHXH ≤

This proposition shows that H(P) is an upper bound on the joint
entropy. If we think of each block Bi in P as a categorical feature
with at most iB2 values, and apply the categorical version of
Proposition 3 (see [6]), we can easily proof that

)()(),...,()(1 PHBHBBHXH
i

im =≤= �

Proposition 5 (independence bound on partitioned joint
entropy). Suppose that P = {B1,…,Bm} is a partition of an itemset
X = {x1,…,xk}. Then

�≤
i

ixHPH)()(

This proposition shows that H(P) is at least as tight as the
independence bound (Proposition 3). This follows from

���� =≤=
i

i
i j

ij
i

i xHBHBHPH)()()()(

where Bij refers to the jth item of the ith block Bi.

Propositions 4 and 5 demonstrate that partitions of the itemset at
hand can provide a tighter upper bound. We could thus consider
all possible partitions and select the lowest value, hoping to avoid
unnecessary table scans. Unfortunately, the number of partitions
of a k-itemset can become very large, even with reasonably small
values of k. This number is known as the Bell number, B(k), and
satisfies the following recurrence relation [17]:

�
−

=
��
�

�
��
�

� −
=

1

0

)(
1

)(
k

i

iB
i

k
kB

where B(0) = 1.

Fortunately, the following results show that we need only
consider partitions of 2 blocks. This still leaves us with 2k−1−1
partitions to examine, which is likely to be too expensive.
Furthermore, computation of the partitioned joint entropy requires
the joint entropy of itemsets of cardinality up to k−1. In this paper
we will therefore only consider partitions with blocks of up to 2
items, even though this produces sub-optimal bounds.

Definition 5 (inclusion of partitions). Suppose that P and P′ are
partitions of an itemset. P includes P′ (P′≤ P) iff

�
i

iQXPQPX =′⊆∃∈∀ :

Proposition 6 (anti-monotonicity of partitioned bound).
Suppose that P and P′ are partitions of an itemset, and PP ≤′ .
Then

)()(PHPH ′≤

Proposition 7 (2-partitions). Suppose that X is an itemset. The
tightest partitioned bound on H(X) can be found among the
partitions of X of cardinality 2.

Example 2. The itemset {B, C, D} in Example 1 produces 4
partitions:

{{B}, {C}, {D}}, {{B, C}, {D}},

{{B, D}, {C}}, {{C, D}, {B}}.

The lowest partitioned joint entropy for these partitions is
produced by {{B, D}, {C}}: 2.41 bits. The joint entropy of {B, C,
D} equals 2.16 bits. Note that similar items (B and D) are grouped
together. Assuming a search algorithm has already considered {A,
B, C}, and is therefore looking for itemsets exceeding 2.5 bits,
itemset {B, C, D} would then be discarded (Proposition 4). The
upper bound on the basis of Proposition 3 (2.95 bits) would not
be sufficient to do so.

3. ALGORITHMS
In this section we present a number of algorithms for computing
maximally informative k-itemsets. The basic outline of these
algorithms is to consider all subsets of size k in lexicographic
order, and compute the joint entropy of each, in order to find the
maximum. We then proceed to apply a number of the results from
Section 2 in order to discard itemsets that can be proven non-
maximal, or even prune large portions of the search space.

We will write a k-element subset of I as a list of integers that refer
to the elements of I.

[]kxxX ,,1 �=

where

kxx <<�1

The algorithms will rely on a simple algorithm for computing the
lexicographic successor of a given itemset, presented in [16]. This
algorithm (LexicographicSuccessor) works as follows (see
pseudocode). The first while-loop identifies the last item i in X
that can be increased (i.e. replaced by a succeeding item). If no
such item can be found, all the subsets have been exhausted.
Otherwise the item i is increased, and all elements to the right of i
are reset to refer to successive items.

Algorithms 1 to 4 all report a single miki (the last one found),
although they can be easily modified to report all miki’s, because
every algorithm tests all candidate miki’s. The fifth algorithm
reports a single approximation that may or may not be an actual
miki.

Algorithm LexicographicSuccessor(X, k, n)

Y ← X

i ← k

while i ≥ 1 and xi = n – k + i

i ← i − 1

if (i = 0)

return “undefined”

else
for j ← i to k

ijxy ij −++← 1

return Y

Algorithm 1. The first algorithm (ExhaustiveMiki) now simply
considers all k-itemsets exhaustively, and reports the maximally
informative one (the last one if more than one miki exists). All
itemsets are considered by calling LexicographicSuccessor
repeatedly until a value undefined is returned (see pseudocode).
The joint entropy is computed by projecting the binary table on
the selected items, and counting the different combinations that
occur (Definition 1).

Algorithm ExhaustiveMiki(k, n)

[]kX ,,1 �←

←maxh JointEntropy(X)

XY ←

while LexicographicSuccessor(X, n) ≠ “undefined”

←X LexicographicSuccessor(X, n)

←h JointEntropy(X)

if maxhh ≥

hh ←max
XY ←

return Y

Algorithm 2. A first improvement on the exhaustive algorithm
can be obtained by applying Proposition 3. This proposition
provides a cheap way of computing an upper bound on the itemset
at hand that can potentially be used to discard a large part of the
candidates. A single condition needs to be added to the basic
algorithm that checks whether the upper bound of the current
itemset exceeds the current maximum. If this condition is
satisfied, we still need to compute the joint entropy by performing
an expensive table scan. Computation of the independence bound
(Proposition 3) requires the computation and storage of the
entropies of the n individual items, as a preparatory step.

Algorithm 3. Especially when correlated items abound, the
independence bound cannot be expected to be very tight.
Proposition 4 provides a tighter bound, and thus a potentially
faster algorithm. This algorithm computes an upper bound by
choosing a partition of the itemset at hand, and computing the
joint entropy of this partition. Although it is tempting to consider
all possible partitions of an itemset, and pick the lowest value, the
discussion in Section 2 shows that this becomes too expensive
with large values of k. Instead, we only consider partitions of
blocks of at most 2 items. Initial experimentation shows that
picking such a partition at random provides the fastest algorithm.
Even though this method may not consider the tightest upper
bound, it is faster because only a single bound needs to be
computed. Partitioned bounds can be computed by looking up,
and adding, pre-computed joint entropies of individual items and
pairs of items.

Algorithm 4. Assuming Proposition 4 provides a substantial
reduction in table scans, we can expect the running time of
Algorithm 3 to be dominated by the computation of the upper

bound for each of the ()n
k itemset. In Algorithm 4, we aim to

improve on this by skipping a range of candidates on the basis of
the joint entropy of the sub-itemset they have in common. By
applying Proposition 2, we know that if an itemset X of size k-l
cannot be extended with any l items (at most l bits) to exceed to
the current maximum, we can skip all k-itemsets starting with X.
This procedure introduces a new parameter l. Larger values of l
lead to larger portions of the search space being skipped.
However, lower values increase the odds of producing a tight
enough upper bound to allow a skip. Informal experimentation
shows that l = 3 typically provides the best trade-off, and is thus
used in our experiments in Section 4.

Algorithm 5. So far, we have considered algorithms that provide
exact solutions. We will see in Section 4 that such exact
algorithms become impractical with increasing values of k. We
therefore present a final algorithm (ForwardSelection) that
produces approximate miki’s. The major advantage of this
algorithm is that it considers only a tiny fraction of all potential k-
itemsets. The reported itemset is computed by progressively
adding items to the initial empty set until k items are selected. At
each step the new item to be added is chosen such that the
increase in joint entropy is maximised (see pseudocode). This
constitutes a greedy step. The algorithm has an asymptotic
complexity of O(k2nN).

Algorithm ForwardSelection(k, n)

∅←X

for },,1{ ki �∈

0max =h

for },,1{ nj �∈

←h JointEntropy }){(jX ∪

if maxhhXj >∧∉

hh ←max

jm ←

}{mXX ∪←

return X

4. EXPERIMENTS
We start our experiments informally, by demonstrating the
usefulness of miki’s in the context of subgroup discovery, which
is our main motivation for this work. Figure 1 (left) shows two
numeric features (lumo en logp) associated with 188 molecules
appearing in the Mutagenesis database [21]. Molecules appear in
two classes, mutagenic (grey dots) and non-mutagenic (black
dots). The axis-parallel lines represent the decision boundaries
formed by the collective of 82 subgroups (rules) discovered by the

mining package Safarii [13][20]. The package produces
conjunctive rules, and as is clear from the figure, there is
considerable redundancy in the individual conditions, as well as
among the conjunctions. The 2-dimensional space is divided into
far fewer areas than can be expected from the number of rules
discovered.

By interpreting each rule as an item, we can use our approach to
reduce redundancy in the set of rules. The figure on the right
demonstrates a selection of 4 rules that form a miki. Clearly, this
subset of rules captures most of the partitioning produced by the
82 rules. Redundant and overly specific decision boundaries
(individual conditions) are avoided. The only location where
important distinction between examples is discarded is in the
lower left corner. The two important decision boundaries in this
area can be added by increasing the number of selected subgroups
to 6. In our further experiments we will see that the joint entropy
reaches an optimum of 2.706 at k = 6 and remains constant after
addition of more items (see last table).

In the remainder, we analyse how well the different algorithms
presented scale with increasing values of k. Three datasets of
varying sizes were used: the well-known Mushroom and Chess
datasets, as well as LumoLogp, a dataset derived from the 82 rules
discovered in the previously mentioned Mutagenesis (datasets can
be obtained from the authors). We have run all five algorithms on
these datasets with values of k between 2 and 7. Typical
applications of miki’s tend to fall well within this range. For each
run, we state the number of table scans, the total time (m:ss) and
the joint entropy of the result. Runs lasting more than 1000
minutes were terminated. In cases where none of the exact
algorithms ran under 1000 minutes, a single run was executed
with low priority, in order to obtain an exact value for the joint
entropy.

Clearly, algorithm 1 performs impractically slow on all datasets,
and can only serve as a baseline for the remaining results. The
application of Proposition 3 (algorithm 2) and especially
Proposition 4 (algorithm 3) provides a significant improvement on
the first two datasets. A reduction of number of table scans of
more than a factor 106 is common. In these cases, considering all
candidates rather than scanning the data becomes the governing
factor in the running time. Although algorithm 4 exploits this fact,
its advantages turn out to be only marginal, because relatively few
additional candidates can be skipped. For all these algorithms k =
7 seems to be the upper limit.

Unfortunately, the first four algorithms perform poorly on
LumoLogp. The high level of redundancy means that most items
can be potential elements of a miki, and few candidates can be
discarded directly. Although the process that generated this
dataset would typically be made more selective, some degree of
redundancy is normal in applications of miki’s, which makes
these algorithms problematic.

The greedy fifth algorithm takes less than one second on each
dataset for each chosen value of k, and is hence a fast alternative.
The joint entropy of its (potentially suboptimal) solution is always
within a few percent of the optimal value. In this case the
redundancy in the data is advantageous, because making
suboptimal greedy choices is less likely.

-1

0

1

2

3

4

5

6

7

8

9

-4 -3,5 -3 -2,5 -2 -1,5 -1 -0,5 0
-1

0

1

2

3

4

5

6

7

8

9

-4 -3,5 -3 -2,5 -2 -1,5 -1 -0,5 0

Figure 1 partitioning of a 2-dimensional space based on the full rule set of 82 rules, and the filtered rule set of 4 rules.

Mushroom (119 x 8124)
 k = 2 k = 3 k = 4

algorithm ts time max ts time max ts time max

1 7021 0:18 273,819 16:29 7.94⋅106 735:23

2 12 0 265 0:03 4,917 1:34

3 4 0:36 83 0:38 602 1:36

4

1.995

2.975

602 1:37

3.934

5 237 0 1.994 354 0 2.973 470 0:01 3.934

 k = 5 k = 6 k = 7

algorithm ts time max ts time max ts time max

1 1.82⋅108 >1000 3.47⋅109 >1000 5.6⋅1010 >1000

2 69,134 34:21 1.23⋅106 692:42 1.95⋅107 >1000

3 9,747 23:25 211,934 445:58 4.58⋅106 >1000

4 9,747 16:17

4.886

209,329 244:11

5.635

4.4⋅106 >1000

6.397

5 585 0:03 4.886 354 0 5.619 470 0:01 6.313

Chess (75 x 3196)
 k = 2 k = 3 k = 4

algorithm ts time max ts time max ts time max

1 2275 0:02 67,525 2:02 1.21⋅106 64:52

2 18 0 113 0 2,366 0:14

3 14 0:07 46 0:07 334 0:13

4

1.982

2.963

334 0:14

3.918

5 149 0 1.982 222 0 2.96 294 0 3.918

 k = 5 k = 6 k = 7

algorithm ts time max ts time max ts time max

1 1.72⋅107 >1000 2.01⋅108 >1000 1.98⋅109 >1000

2 36,178 4:13 406,396 59:42 3.89⋅106 675:34

3 3,372 1:41 33,007 18:37 411,668 203:46

4 3,372 1:33

4.852

32,995 15:42

5.755

390,673 213:57

6.593

5 365 0 4.852 435 0:01 5.755 504 0:01 6.593

LumoLogp (82 x 188)
 k = 2 k = 3 k = 4

algorithm ts time max ts time max ts time max

1 3,321 0 88,560 0:10 1.74⋅106 5:50

2 2,787 0 88,560 0:10 1.74⋅106 5:35

3 249 0 62,778 0:08 1.20⋅106 3:56

4

1.942

2.313

 4:03

2.584

5 163 0 1.938 243 0 2.251 322 0 2.429

 k = 5 k = 6 k = 7

algorithm ts time max ts time max ts time max

1 2.73⋅107 >1000 3.50⋅108 >1000 3.8⋅109 >1000

2 2.73⋅107 128:47 3.50⋅108 >1000 3.8⋅109 >1000

3 2.73⋅107 129:14 3.50⋅108 >1000 3.8⋅109 >1000

4 2.73⋅107 121:28

2.695

3.50⋅108 >1000

2.706

3.8⋅109 >1000

2.706

5 400 0 2.578 477 0 2.706 504 0:01 2.706

5. RELATED WORK
We have already mentioned the relation between miki’s and
frequent itemsets. Another obvious role for miki’s is in feature
selection. Many algorithms have been developed for this purpose
(see [7] for an overview), particularly in a supervised setting:
select only those features that are relevant for predicting the value
of a class variable. Our framework on the other hand is
unsupervised. The aim is simply to select features that allow the
optimal distinction between examples, regardless of any specific
classification or regression task.

A well-known example of a supervised feature selection algorithm
is Relief [10]. It works by assigning a weight to features on the
basis of their ability to distinguish between class values. The
weights are updated according to an instance based learning
approach, and only features with sufficient weight are returned as
relevant features. An important limitation of this approach is that
features are selected on relevancy only. No attempt is made to
prevent redundancy within the selected features. This is in fact the
inverse from our approach which returns a non-redundant feature
set, but relevancy does not apply, due to its unsupervised nature.

Alternative approaches [15][19][22] do address redundancy, and
are thus feature subset selection methods rather than feature
selection methods. Most of these approaches work in a supervised
setting. They come in two varieties: filter methods and wrapper
methods [7]. Wrapper methods employ the performance of a
specific learning algorithm (such as C4.5 or an instance based
approach) to select features. A straight-forward example of this is
given in [14] and [19], where the performance of a simple
decision table is used to judge the quality of a particular feature
subset. Filter methods on the other hand select feature subsets on
the basis of quality measures that are relatively independent of the
learning algorithm to be applied subsequently. These measures
typically come from Information Theory [15][22].

Most authors recognise the exponential nature of the search space
of feature subsets, and present heuristic search algorithms similar
to our fifth algorithm. Typical examples of search strategies are
Forward Selection, Backward Selection, and variations thereof

[15][19][22], or more randomised methods. Unfortunately, few
papers compare such greedy solutions to an exhaustive analysis,
making a good judgement of the error with respect to the optimal
solution difficult.

The framework presented is related to our previous work on
discovering primary keys and functional dependencies [12]. In a
sense, miki’s can be seen as noisy counterparts of (candidate)
keys, as they aim to optimise the distinction between examples. In
fact, a miki of joint entropy equal to log(N) forms a candidate key.
Similarly, the feature subsets produced by a different method,
called FOCUS [2], correspond to functional dependencies
between the feature subset and the class variable.

Somewhat related to our work is the notion of Independent
Component Analysis (ICA) [4][9]. It is a statistical method that
expresses the original multidimensional, and typically numeric,
data into a small number of variables that are more or less
statistically independent. These variables are typically latent, in
the sense that they do not appear as actual attributes in the
original data. Clearly, our approach only returns attributes that
appear in the data.

6. CONCLUSION
We have presented a new framework for mining binary data,
based on information theoretical notions. Items are selected on the
basis of their distinctive power, also relative to other selected
items, such that redundant items will be ignored. As such, it
provides an interesting alternative to the common frequent itemset
framework. The framework has a number of interesting
applications, notably the reduction of results produced by other
pattern discovery techniques. Especially in rich domains such as
structured or multi-relational data, where the expressiveness of
pattern languages used cause high levels of redundancy, miki’s
allow the discovery of important patterns rather than simply
interesting ones. This application was demonstrated by our first
experiment, and will be further investigated in future work.

We have presented a number of algorithms of varying efficiency.
Based on some basic information theoretical observations, it is
often possible to prune large parts of the search space, and thus

find optimal solutions. Unfortunately, the exact algorithms break
down in some data sets with high levels of redundancy, where few
candidate itemsets can be discarded without going back to the
data. Finally we have presented an approximate algorithm that is
extremely fast, even with larger values of k, while still producing
results comparable to the optimal solution.

Our application of choice for miki’s is as a means of filtering
results obtained by subgroup or rule discovery. In this context
miki’s capture the intuitive requirement that results be non-
redundant. However, one can envisage alternative intuitions that
would inspire different filtering methods. As an example, one
could require selected patterns to be mutually exclusive, or
optimal with respect to further classification (wrapper approach).
In fact any quality measure for itemsets can be applied. In future
work we intend to compare such measures.

7. REFERENCES
[1] Agrawal, R., Imielinski, T., Swami, A., Mining Association

Rules between Sets of Items in Large Databases, In
Proceedings ACM SIGMOD, 1993

[2] Almuallim, H., Dietterich, T.G., Learning with Many
Irrelevant Features, In Proceedings of AAAI ’91, 1991

[3] Bingham, E., Mannila, H. Seppänen, J.K., Topics in 0-1
Data, in Proceedings SIGKDD ’02, 2002

[4] Comon, P., Independent Component Analysis – a New
Concept? Signal Processing, 36:287-314, 1994

[5] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Introduction to
Algorithms, The MIT Press, 1990

[6] Cover, T.M., Thomas, J.A., Elements of Information Theory,
John Wiley & Sons, 1991

[7] Guyon, I., Elisseeff, A., An Introduction to Variable and
Feature Selection, Journal of Machine Learning Research 3,
1157-1182, 2003

[8] Han, J., Pei, J., Yin, Y., Mining Frequent Patterns without
Candidate Generation, In Proceedings ACM SIGMOD,
2000

[9] Hyvärinen, A., Karhunen, J., Oja, E., Independent
Component Analysis, John Wiley & Sons, 2001

[10] Kira, K., Rendell, L.A., A Practical Approach to Feature
Selection, In Proceedings ML ’92, 1992

[11] Klösgen, W., Explora: A Multipattern and Multistrategy
Discovery Assistant, In Advances in Knowledge Discovery
and Data Mining, AAAI/MIT Press, Cambridge, USA, 1996

[12] Knobbe, A.J., Adriaans, P.W., Discovering Foreign Key
Relations in Relational Databases, In Proceedings of
EMCSR ’96, 1996

[13] Knobbe, A.J., Multi-Relational Data Mining, Ph.D.
dissertation, 2004, http://www.kiminkii.com/thesis.pdf

[14] Kohavi, R., The Power of Decision Tables, In Proceedings of
ECML ’95, 1995

[15] Koller, D., Sahami, M., Toward Optimal Feature Selection,
In Proceedings of ICML ’96, 1996

[16] Kramer, S., Lavra�, N., Flach, P.A., Propositionalization
Approaches to Relational Data Mining, in Relational Data
Mining, Springer-Verlag, 2001

[17] Kreher, D.L., Stinson, D.R., Combinatorial Algorithms,
CRC Press, 1999

[18] Lavra�, N., Flach, P.A., An Extended Transformation
Approach to Inductive Logic Programming, ACM
Transactions on Computational Logic, 2(4), 2001

[19] Pfahringer, B., Compression-Based Feature Subset
Selection, In Proceedings of IJCAI ’95, 1995

[20] Safarii Multi-Relational Data Mining environment,
http://www.kiminkii.com/safarii.html, 2006

[21] Srinivasan, A., Muggleton, S.H., Sternberg, M.J.E., King,
R.D., Theories for mutagenicity: A study in first-order and
feature-based induction, Artificial Intelligence, 85(1,2),
1996

[22] Wang, H., Bell, D., Murtagh, F., Axiomatic Approach to
Feature Subset Selection Based on Relevance, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 21(3), 1999

[23] Wrobel, S., An Algorithm for Multi-Relational Discovery of
Subgroups, In Proceedings PKDD’97, 1997

[24] Zaki, M.J., Orihara, M., Theoretical Foundations of
Association Rules, In Proceedings ACM SIGMED workshop
on research issues in KDD, 1998

