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ABSTRACT 
In this paper we present a new approach to mining binary data. 
We treat each binary feature (item) as a means of distinguishing 
two sets of examples. Our interest is in selecting from the total set 
of items an itemset of specified size, such that the database is 
partitioned with as uniform a distribution over the parts as 
possible. To achieve this goal, we propose the use of joint entropy 
as a quality measure for itemsets, and refer to optimal itemsets of 
cardinality k as maximally informative k-itemsets. We claim that 
this approach maximises distinctive power, as well as minimises 
redundancy within the feature set. A number of algorithms is 
presented for computing optimal itemsets efficiently.  

Categories and Subject Descriptors 
F.2 Analysis of Algorithms and Problem Complexity. G.3 
Probability and Statistics. H.1.1 Systems and Information Theory. 
I.2.6 Learning 

General Terms 
Algorithms, Theory. 

Keywords 
Maximally informative k-itemsets, binary data, feature selection, 
information theory, joint entropy, subgroup discovery. 

1. INTRODUCTION 
In this paper we present a novel class of regularities to be mined 
from binary datasets. If we think of the binary features (items) in 
such datasets as means of distinguishing examples within the 
dataset from each other, we could wonder which features are best 
at doing so. Furthermore, we could wonder whether some features 
provide any meaningful and additional distinction, given a 
number of the other features. In other words, we are interested in 
selecting a small set of binary features that provides as good a 
distinction of the examples as possible. A subset of binary 
features that maximises the joint entropy of its features provides 

exactly that notion. We will refer to such feature sets of 
cardinality k as maximally informative k-itemsets (or miki’s). 

As information theory dictates [6], the joint entropy of a set of k 
binary features is optimal when the distribution of possible 
combinations of binary values is uniform. In other words, the 
database is partitioned into 2k parts of equal size. This happens if 
all selected features are independent and each feature has a 
probability of p(x = 1) = 0.5. A nice property of favouring sets 
with high joint entropy is that features are only selected if they 
provide distinctive power that is additional to the remaining 
features. A feature may be distinctive in isolation (i.e. have an 
entropy of 1 bit), but is of no use if this information is already 
conveyed by the remaining features. 

Although the definition of miki’s is fairly basic, they are of use in 
a wide array of domains. The general applicability becomes 
clearer if we interpret binary features in the most general sense: 
any function D → {0, 1} that splits a database in two mutually 
exclusive parts. This includes the obvious binary attributes 
(items), but also subgroups or patterns (examples are either 
covered by a pattern, or not). Furthermore, one can think of binary 
classifiers as binary features. The following potential applications 
explain our motivation for working on miki’s: 

• Feature selection [7][10][15][22] in binary databases. A 
considerable number of Data Mining techniques is 
hindered by the presence of many attributes, either due to 
the presence of irrelevant attributes, or for reasons of 
efficiency. If we can select a small number of attributes, 
while retaining most of the discriminative power, the 
results of such techniques may be improved. 

• Subgroup discovery [11][13][23]. Subgroup discovery 
(whether supervised or unsupervised) typically produces 
an abundance of interesting patterns that is very hard to 
inspect manually. There may be considerable redundancy 
because relevant subsets of the data may be described in 
several (nearly) equivalent ways. Furthermore, some 
patterns constitute logical combinations of two or more 
alternative patterns reported by the subgroup discovery 
algorithm. Selecting patterns by means of miki’s will 
condense the original set of individually interesting 
patterns to a manageable set of important findings.  

• Propositionalisation in Multi-Relational Data Mining 
(MRDM) [13][16][18]. An important task within 
MRDM is the translation of multi-relational data to a 
propositional format. The obvious application of this 
operation is to allow the deployment of attribute-value 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
KDD'06, August 20–23, 2006, Philadelphia, Pennsylvania, USA. 
Copyright 2006 ACM 1-59593-339-5/06/0008...$5.00. 
 



learning systems that could otherwise not be used due to 
the non-determinate nature of the data. The 
transformation is typically run in an unsupervised setting, 
and many binary features (each corresponding to a 
discovered multi-relational pattern) are produced. 
Without proper filtering, the resulting binary table will 
contain too many redundant features.  

 

Maximally informative k-itemsets have a number of features that 
set them apart from frequent itemsets, which have been the 
dominant class of models for mining binary data [1][8][24]. First 
of all, miki’s are symmetric in their treatment of the values 0 and 
1. The two values are merely seen as identifiers for the two 
distinct groups. In fact, swapping these values in any of the 
features considered has no effect on the computation. In many 
applications, this symmetry is desirable. A symmetrical treatment 
of 0 and 1 also implies that it makes sense to not just have a 
minimum support threshold of the 1’s, as is the case in most 
frequent itemset algorithms, but also on the 0’s (in a sense a 
maximum support threshold for the 1’s). The use of a minimum 
on the entropy replaces these two thresholds, as the entropy of a 
feature decreases if either of the values becomes dominant. 

The goals of frequent itemsets and miki’s are orthogonal in a 
sense. Whereas frequent itemsets favour items that are positively 
associated [1], miki’s aim at optimising the independence of items 
within the miki. Frequent itemset mining is sensitive to items with 
high support, because their addition to any frequent itemset has 
little effect on the support. Such items are ignored when mining 
for miki’s, because they are frequent and thus provide little 
information, but also because internal correlation is minimised.  

In this paper, we present some basic results concerning miki’s and 
information theory (Section 2). More importantly, we introduce a 
number of algorithms for computing miki’s (Section 3). We start 
by describing four algorithms for computing exact miki’s. As the 
number of candidate miki’s can be very large, efficiency is a 
major concern. We start by considering an exhaustive algorithm, 
and improve on that by applying a number of the observations 
from Section 2. As the scale of the search space becomes 
prohibitive with larger values of k, we also describe a greedy 
algorithm that computes approximate miki’s efficiently, at a small 
penalty for optimality. 

In Section 4, we perform a series of experiments to demonstrate 
the value of maximally informative k-itemsets, and to assess the 
efficiency of the algorithms presented. We also empirically test 
the error introduced by the greedy algorithm. The paper finishes 
with related work and conclusions in Section 5 and 6. 

2. PRELIMINARIES 
In this section, we will provide definitions for basic concepts 
related to maximally informative k-itemsets, and introduce a 
number of useful properties. These properties will be exploited by 
the algorithms introduced in the next section. In the remainder, we 
will assume that we have a collection of items I. We will use 
lowercase x1, x2,… to indicate items, and capitals X and Y to 
indicate itemsets. We assume that we can obtain a probability 
estimate p(x = a) by scanning the database associated with I, and 
counting the relative number of occurrences of value a. 

We start with a number of basic definitions and properties, based 
on information theoretical notions presented in [6]. We begin by 

defining the notion of joint entropy of an itemset, a measure for 
the amount of information conveyed by the itemset. A maximally 
informative k-itemset (or miki in short) is then simply the itemset 
of specified cardinality that maximises this joint entropy. Joint 
entropy is measured in bits. 

Definition 1 (joint entropy). Suppose that X = {x1,…,xk} is an 
itemset, and B = (b1,…,bk) ∈ {0,1}k is a tuple of binary values. 
The joint entropy of X is defined as 
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Definition 2 (maximally informative k-itemset). Suppose that I 
is a collection of n items. An itemset X ⊆ I of cardinality k is a 
maximally informative k-itemset, iff for all itemsets Y ⊆ I of 
cardinality k,  

)()( XHYH ≤  

Note that the joint entropy of an itemset increases as more items 
are added to it. Because items are binary features, every item 
provides at most 1 bit of additional information. 

Proposition 1 (monotonicity of joint entropy). Suppose X and Y 
are two itemsets such that X ⊆ Y. Then 

)()( YHXH ≤  

Proposition 2 (unit growth of joint entropy). Suppose X and Y 
are two itemsets such that X ⊆ Y. Then 

XYXHYH \)()( +≤  

As Proposition 1 shows, the joint entropy is a non-decreasing 
function of the number of items involved in the itemset. This 
raises the issue of choosing a good value for the parameter k. In 
theory larger values of k will give a better distinction between 
examples. On the other hand, feature selection calls for small 
numbers of items. In many cases, the right value of k will be 
implied by the application. The problem is very similar to the 
selection of the right number of clusters in clustering tasks, where 
this number is often determined by considering increasing values, 
and stopping when there is a clear drop in improvement. An 
example of this is given in our experiments in Section 4. 

Algorithms for computing miki’s of a desired cardinality k will 
have to consider a large amount of candidate itemsets and 
compute their joint entropy by scanning the database. Computing 
the joint entropy of a given itemset essentially comes down to a 
bucket sort [5] where each bucket corresponds to a cell in a 
contingency table of k dimensions. This table scan can be 
performed in O(kN), where N equals the number of records in the 

database. In theory a total of ( )n
k  itemsets will have to be 

considered. As N is typically large and therefore a table scan is an 
expensive operation, it is important to have upper bounds on the 
value of H(X) that are relatively cheap to compute. Such a bound 
can then be used to discard candidates that are clearly not 
maximal, without having to scan the data for verification. A 
simple, moderately tight, upper bound can be obtained by 
considering the entropy of the individual items in the itemset. 

Proposition 3 (independence bound on joint entropy). Suppose 
that X = {x1,…,xk} is an itemset. Then 
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Although the proof (see [6]) of this proposition is non-trivial, and 
involves among others Jensen’s inequality, the intuition behind it 
is straightforward. Every item provides a certain amount of 
information to the joint entropy. If all pairs of items are 
independent, the joint entropy equals the sum of entropies. 
However, if items are dependent, they share a certain amount of 
information, which is ignored when simply adding the individual 
entropies. 

Note that, although our specific interest in this paper is with 
binary features, Definitions 1, 2 and Proposition 3 can be easily 
generalised to categorical features [6]. 

Example 1. Consider the following database consisting of four 
items. Items A to C all have equal numbers of 1’s and 0’s, hence 
H(A) = 1, H(B) = 1, H(C) = 1. H(D) = − �lg� − �lg� � 0.96. 
The itemset {A, B, C} is a maximally informative k-itemset of 
cardinality 3. Its joint entropy equals 2.5 bits which is less than 
the 3 bits of information provided by the three items separately 
(Proposition 3).  

A B C D 

1 1 1 0 

1 1 0 0 

1 1 1 0 

1 0 0 0 

0 1 1 0 

0 0 0 1 

0 0 1 1 

0 0 0 1 

 

The fact that mutual information between items is ignored by 
Proposition 3 suggests that we can obtain a potentially tighter 
bound by grouping items that share a considerable amount of 
information, and taking the joint entropy within this group rather 
than the sum of the entropies. This amounts to treating each such 
group as a single categorical feature with all binary combinations 
as possible values. Joint entropies for such (small) subsets of 
items can for example be obtained cheaply by pre-computing and 
storing the results in a datastructure for future reference. We 
continue by presenting a number of results that will be exploited 
in algorithms presented in the next section. We show that 
grouping items within the itemset can be used to compute upper 
bounds for H(X) that are potentially tighter than the independence 
bound (Proposition 3). Furthermore, bounds become tighter as 
more items are grouped together. 

Definition 3 (partition of itemset). Suppose that X = {x1,…,xk} is 
an itemset. A partition of X is a set of itemsets P = {B1,…,Bm} 
such that 
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The itemsets Bi are known as the blocks of P. 

Definition 4 (joint entropy of partition). Suppose that P = 
{B1,…,Bm} is a partition of an itemset. The joint entropy of P is 
defined as 
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Proposition 4 (partitioned bound on joint entropy). Suppose 
that P = {B1,…,Bm} is a partition of an itemset X. Then 

)()( PHXH ≤  

This proposition shows that H(P) is an upper bound on the joint 
entropy. If we think of each block Bi in P as a categorical feature 
with at most iB2  values, and apply the categorical version of 
Proposition 3 (see [6]), we can easily proof that  

)()(),...,()( 1 PHBHBBHXH
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Proposition 5 (independence bound on partitioned joint 
entropy). Suppose that P = {B1,…,Bm} is a partition of an itemset 
X = {x1,…,xk}. Then 
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This proposition shows that H(P) is at least as tight as the 
independence bound (Proposition 3). This follows from 
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where Bij refers to the jth item of the ith block Bi. 

Propositions 4 and 5 demonstrate that partitions of the itemset at 
hand can provide a tighter upper bound. We could thus consider 
all possible partitions and select the lowest value, hoping to avoid 
unnecessary table scans. Unfortunately, the number of partitions 
of a k-itemset can become very large, even with reasonably small 
values of k. This number is known as the Bell number, B(k), and 
satisfies the following recurrence relation [17]: 
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where B(0) = 1. 

Fortunately, the following results show that we need only 
consider partitions of 2 blocks. This still leaves us with 2k−1−1 
partitions to examine, which is likely to be too expensive. 
Furthermore, computation of the partitioned joint entropy requires 
the joint entropy of itemsets of cardinality up to k−1. In this paper 
we will therefore only consider partitions with blocks of up to 2 
items, even though this produces sub-optimal bounds. 

Definition 5 (inclusion of partitions). Suppose that P and P′ are 
partitions of an itemset. P includes P′ (P′≤ P) iff 

�
i
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Proposition 6 (anti-monotonicity of partitioned bound). 
Suppose that P and P′ are partitions of an itemset, and PP ≤′ . 
Then 

)()( PHPH ′≤  

Proposition 7 (2-partitions). Suppose that X is an itemset. The 
tightest partitioned bound on H(X) can be found among the 
partitions of X of cardinality 2. 

Example 2. The itemset {B, C, D} in Example 1 produces 4 
partitions:  

{{B}, {C}, {D}}, {{B, C}, {D}},  



{{B, D}, {C}}, {{C, D}, {B}}. 

The lowest partitioned joint entropy for these partitions is 
produced by {{B, D}, {C}}: 2.41 bits. The joint entropy of {B, C, 
D} equals 2.16 bits. Note that similar items (B and D) are grouped 
together. Assuming a search algorithm has already considered {A, 
B, C}, and is therefore looking for itemsets exceeding 2.5 bits, 
itemset {B, C, D} would then be discarded (Proposition 4). The 
upper bound on the basis of Proposition 3 (2.95 bits) would not 
be sufficient to do so. 

3. ALGORITHMS 
In this section we present a number of algorithms for computing 
maximally informative k-itemsets. The basic outline of these 
algorithms is to consider all subsets of size k in lexicographic 
order, and compute the joint entropy of each, in order to find the 
maximum. We then proceed to apply a number of the results from 
Section 2 in order to discard itemsets that can be proven non-
maximal, or even prune large portions of the search space. 

We will write a k-element subset of I as a list of integers that refer 
to the elements of I. 

[ ]kxxX ,,1 �=  

where 

kxx <<�1
 

The algorithms will rely on a simple algorithm for computing the 
lexicographic successor of a given itemset, presented in [16]. This 
algorithm (LexicographicSuccessor) works as follows (see 
pseudocode). The first while-loop identifies the last item i in X 
that can be increased (i.e. replaced by a succeeding item). If no 
such item can be found, all the subsets have been exhausted. 
Otherwise the item i is increased, and all elements to the right of i 
are reset to refer to successive items.  

Algorithms 1 to 4 all report a single miki (the last one found), 
although they can be easily modified to report all miki’s, because 
every algorithm tests all candidate miki’s. The fifth algorithm 
reports a single approximation that may or may not be an actual 
miki. 

 

Algorithm LexicographicSuccessor(X, k, n) 
 

Y ← X 

i ← k 

while i ≥ 1 and xi = n – k + i  

i ← i − 1 

if (i = 0) 

return “undefined” 

else 
for j ← i to k 

ijxy ij −++← 1  

return Y 

 

Algorithm 1. The first algorithm (ExhaustiveMiki) now simply 
considers all k-itemsets exhaustively, and reports the maximally 
informative one (the last one if more than one miki exists). All 
itemsets are considered by calling LexicographicSuccessor 
repeatedly until a value undefined is returned (see pseudocode). 
The joint entropy is computed by projecting the binary table on 
the selected items, and counting the different combinations that 
occur (Definition 1). 

 

Algorithm ExhaustiveMiki(k, n) 
 

[ ]kX ,,1 �←  

←maxh  JointEntropy(X) 

XY ←  

while LexicographicSuccessor(X, n) ≠ “undefined” 

←X  LexicographicSuccessor(X, n) 

←h  JointEntropy(X) 

if maxhh ≥  

hh ←max  
XY ←  

return Y 

 

Algorithm 2. A first improvement on the exhaustive algorithm 
can be obtained by applying Proposition 3. This proposition 
provides a cheap way of computing an upper bound on the itemset 
at hand that can potentially be used to discard a large part of the 
candidates. A single condition needs to be added to the basic 
algorithm that checks whether the upper bound of the current 
itemset exceeds the current maximum. If this condition is 
satisfied, we still need to compute the joint entropy by performing 
an expensive table scan. Computation of the independence bound 
(Proposition 3) requires the computation and storage of the 
entropies of the n individual items, as a preparatory step. 

Algorithm 3. Especially when correlated items abound, the 
independence bound cannot be expected to be very tight. 
Proposition 4 provides a tighter bound, and thus a potentially 
faster algorithm. This algorithm computes an upper bound by 
choosing a partition of the itemset at hand, and computing the 
joint entropy of this partition. Although it is tempting to consider 
all possible partitions of an itemset, and pick the lowest value, the 
discussion in Section 2 shows that this becomes too expensive 
with large values of k. Instead, we only consider partitions of 
blocks of at most 2 items. Initial experimentation shows that 
picking such a partition at random provides the fastest algorithm. 
Even though this method may not consider the tightest upper 
bound, it is faster because only a single bound needs to be 
computed. Partitioned bounds can be computed by looking up, 
and adding, pre-computed joint entropies of individual items and 
pairs of items. 

Algorithm 4. Assuming Proposition 4 provides a substantial 
reduction in table scans, we can expect the running time of 
Algorithm 3 to be dominated by the computation of the upper 



bound for each of the ( )n
k  itemset. In Algorithm 4, we aim to 

improve on this by skipping a range of candidates on the basis of 
the joint entropy of the sub-itemset they have in common. By 
applying Proposition 2, we know that if an itemset X of size k-l 
cannot be extended with any l items (at most l bits) to exceed to 
the current maximum, we can skip all k-itemsets starting with X. 
This procedure introduces a new parameter l. Larger values of l 
lead to larger portions of the search space being skipped. 
However, lower values increase the odds of producing a tight 
enough upper bound to allow a skip. Informal experimentation 
shows that l = 3 typically provides the best trade-off, and is thus 
used in our experiments in Section 4. 

Algorithm 5. So far, we have considered algorithms that provide 
exact solutions. We will see in Section 4 that such exact 
algorithms become impractical with increasing values of k. We 
therefore present a final algorithm (ForwardSelection) that 
produces approximate miki’s. The major advantage of this 
algorithm is that it considers only a tiny fraction of all potential k-
itemsets. The reported itemset is computed by progressively 
adding items to the initial empty set until k items are selected. At 
each step the new item to be added is chosen such that the 
increase in joint entropy is maximised (see pseudocode). This 
constitutes a greedy step. The algorithm has an asymptotic 
complexity of O(k2nN). 

 

Algorithm ForwardSelection(k, n) 
 

∅←X  

for },,1{ ki �∈  

0max =h  

for },,1{ nj �∈  

←h  JointEntropy }){( jX ∪  

if maxhhXj >∧∉  

hh ←max  

jm ←  

}{mXX ∪←  

return X 

 

4. EXPERIMENTS 
We start our experiments informally, by demonstrating the 
usefulness of miki’s in the context of subgroup discovery, which 
is our main motivation for this work. Figure 1 (left) shows two 
numeric features (lumo en logp) associated with 188 molecules 
appearing in the Mutagenesis database [21]. Molecules appear in 
two classes, mutagenic (grey dots) and non-mutagenic (black 
dots). The axis-parallel lines represent the decision boundaries 
formed by the collective of 82 subgroups (rules) discovered by the 

mining package Safarii [13][20]. The package produces 
conjunctive rules, and as is clear from the figure, there is 
considerable redundancy in the individual conditions, as well as 
among the conjunctions. The 2-dimensional space is divided into 
far fewer areas than can be expected from the number of rules 
discovered. 

By interpreting each rule as an item, we can use our approach to 
reduce redundancy in the set of rules. The figure on the right 
demonstrates a selection of 4 rules that form a miki. Clearly, this 
subset of rules captures most of the partitioning produced by the 
82 rules. Redundant and overly specific decision boundaries 
(individual conditions) are avoided. The only location where 
important distinction between examples is discarded is in the 
lower left corner. The two important decision boundaries in this 
area can be added by increasing the number of selected subgroups 
to 6. In our further experiments we will see that the joint entropy 
reaches an optimum of 2.706 at k = 6 and remains constant after 
addition of more items (see last table). 

In the remainder, we analyse how well the different algorithms 
presented scale with increasing values of k. Three datasets of 
varying sizes were used: the well-known Mushroom and Chess 
datasets, as well as LumoLogp, a dataset derived from the 82 rules 
discovered in the previously mentioned Mutagenesis (datasets can 
be obtained from the authors). We have run all five algorithms on 
these datasets with values of k between 2 and 7. Typical 
applications of miki’s tend to fall well within this range. For each 
run, we state the number of table scans, the total time (m:ss) and 
the joint entropy of the result. Runs lasting more than 1000 
minutes were terminated. In cases where none of the exact 
algorithms ran under 1000 minutes, a single run was executed 
with low priority, in order to obtain an exact value for the joint 
entropy. 

Clearly, algorithm 1 performs impractically slow on all datasets, 
and can only serve as a baseline for the remaining results. The 
application of Proposition 3 (algorithm 2) and especially 
Proposition 4 (algorithm 3) provides a significant improvement on 
the first two datasets. A reduction of number of table scans of 
more than a factor 106 is common. In these cases, considering all 
candidates rather than scanning the data becomes the governing 
factor in the running time. Although algorithm 4 exploits this fact, 
its advantages turn out to be only marginal, because relatively few 
additional candidates can be skipped. For all these algorithms k = 
7 seems to be the upper limit. 

Unfortunately, the first four algorithms perform poorly on 
LumoLogp. The high level of redundancy means that most items 
can be potential elements of a miki, and few candidates can be 
discarded directly. Although the process that generated this 
dataset would typically be made more selective, some degree of 
redundancy is normal in applications of miki’s, which makes 
these algorithms problematic. 

The greedy fifth algorithm takes less than one second on each 
dataset for each chosen value of k, and is hence a fast alternative. 
The joint entropy of its (potentially suboptimal) solution is always 
within a few percent of the optimal value. In this case the 
redundancy in the data is advantageous, because making 
suboptimal greedy choices is less likely. 
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Figure 1 partitioning of a 2-dimensional space based on the full rule set of 82 rules, and the filtered rule set of 4 rules.

 

Mushroom (119 x 8124) 
 k = 2 k = 3 k = 4 

algorithm ts time max ts time max ts time max 

1 7021 0:18 273,819 16:29 7.94⋅106 735:23 

2 12 0 265 0:03 4,917 1:34 

3 4 0:36 83 0:38 602 1:36 

4   

1.995 

  

2.975 

602 1:37 

3.934 

5 237 0 1.994 354 0 2.973 470 0:01 3.934 

 k = 5 k = 6 k = 7 

algorithm ts time max ts time max ts time max 

1 1.82⋅108 >1000 3.47⋅109 >1000 5.6⋅1010 >1000 

2 69,134 34:21 1.23⋅106 692:42 1.95⋅107 >1000 

3 9,747 23:25 211,934 445:58 4.58⋅106 >1000 

4 9,747 16:17 

4.886 

209,329 244:11 

5.635 

4.4⋅106 >1000 

6.397 

5 585 0:03 4.886 354 0 5.619 470 0:01 6.313 

Chess (75 x 3196) 
 k = 2 k = 3 k = 4 

algorithm ts time max ts time max ts time max 

1 2275 0:02 67,525 2:02 1.21⋅106 64:52 

2 18 0 113 0 2,366 0:14 

3 14 0:07 46 0:07 334 0:13 

4   

1.982 

  

2.963 

334 0:14 

3.918 

5 149 0 1.982 222 0 2.96 294 0 3.918 

 k = 5 k = 6 k = 7 

algorithm ts time max ts time max ts time max 

1 1.72⋅107 >1000 2.01⋅108 >1000 1.98⋅109 >1000 

2 36,178 4:13 406,396 59:42 3.89⋅106 675:34 

3 3,372 1:41 33,007 18:37 411,668 203:46 

4 3,372 1:33 

4.852 

32,995 15:42 

5.755 

390,673 213:57 

6.593 

5 365 0 4.852 435 0:01 5.755 504 0:01 6.593 



LumoLogp (82 x 188) 
 k = 2 k = 3 k = 4 

algorithm ts time max ts time max ts time max 

1 3,321 0 88,560 0:10 1.74⋅106 5:50 

2 2,787 0 88,560 0:10 1.74⋅106 5:35 

3 249 0 62,778 0:08 1.20⋅106 3:56 

4   

1.942 

  

2.313 

 4:03 

2.584 

5 163 0 1.938 243 0 2.251 322 0 2.429 

 k = 5 k = 6 k = 7 

algorithm ts time max ts time max ts time max 

1 2.73⋅107 >1000 3.50⋅108 >1000 3.8⋅109 >1000 

2 2.73⋅107 128:47 3.50⋅108 >1000 3.8⋅109 >1000 

3 2.73⋅107 129:14 3.50⋅108 >1000 3.8⋅109 >1000 

4 2.73⋅107 121:28 

2.695 

3.50⋅108 >1000 

2.706 

3.8⋅109 >1000 

2.706 

5 400 0 2.578 477 0 2.706 504 0:01 2.706 

 

5. RELATED WORK 
We have already mentioned the relation between miki’s and 
frequent itemsets. Another obvious role for miki’s is in feature 
selection. Many algorithms have been developed for this purpose 
(see [7] for an overview), particularly in a supervised setting: 
select only those features that are relevant for predicting the value 
of a class variable. Our framework on the other hand is 
unsupervised. The aim is simply to select features that allow the 
optimal distinction between examples, regardless of any specific 
classification or regression task. 

A well-known example of a supervised feature selection algorithm 
is Relief [10]. It works by assigning a weight to features on the 
basis of their ability to distinguish between class values. The 
weights are updated according to an instance based learning 
approach, and only features with sufficient weight are returned as 
relevant features. An important limitation of this approach is that 
features are selected on relevancy only. No attempt is made to 
prevent redundancy within the selected features. This is in fact the 
inverse from our approach which returns a non-redundant feature 
set, but relevancy does not apply, due to its unsupervised nature. 

Alternative approaches [15][19][22] do address redundancy, and 
are thus feature subset selection methods rather than feature 
selection methods. Most of these approaches work in a supervised 
setting. They come in two varieties: filter methods and wrapper 
methods [7]. Wrapper methods employ the performance of a 
specific learning algorithm (such as C4.5 or an instance based 
approach) to select features. A straight-forward example of this is 
given in [14] and [19], where the performance of a simple 
decision table is used to judge the quality of a particular feature 
subset. Filter methods on the other hand select feature subsets on 
the basis of quality measures that are relatively independent of the 
learning algorithm to be applied subsequently. These measures 
typically come from Information Theory [15][22]. 

Most authors recognise the exponential nature of the search space 
of feature subsets, and present heuristic search algorithms similar 
to our fifth algorithm. Typical examples of search strategies are 
Forward Selection, Backward Selection, and variations thereof 

[15][19][22], or more randomised methods. Unfortunately, few 
papers compare such greedy solutions to an exhaustive analysis, 
making a good judgement of the error with respect to the optimal 
solution difficult. 

The framework presented is related to our previous work on 
discovering primary keys and functional dependencies [12]. In a 
sense, miki’s can be seen as noisy counterparts of (candidate) 
keys, as they aim to optimise the distinction between examples. In 
fact, a miki of joint entropy equal to log(N) forms a candidate key. 
Similarly, the feature subsets produced by a different method, 
called FOCUS [2], correspond to functional dependencies 
between the feature subset and the class variable. 

Somewhat related to our work is the notion of Independent 
Component Analysis (ICA) [4][9]. It is a statistical method that 
expresses the original multidimensional, and typically numeric, 
data into a small number of variables that are more or less 
statistically independent. These variables are typically latent, in 
the sense that they do not appear as actual attributes in the 
original data. Clearly, our approach only returns attributes that 
appear in the data. 

6. CONCLUSION 
We have presented a new framework for mining binary data, 
based on information theoretical notions. Items are selected on the 
basis of their distinctive power, also relative to other selected 
items, such that redundant items will be ignored. As such, it 
provides an interesting alternative to the common frequent itemset 
framework. The framework has a number of interesting 
applications, notably the reduction of results produced by other 
pattern discovery techniques. Especially in rich domains such as 
structured or multi-relational data, where the expressiveness of 
pattern languages used cause high levels of redundancy, miki’s 
allow the discovery of important patterns rather than simply 
interesting ones. This application was demonstrated by our first 
experiment, and will be further investigated in future work. 

We have presented a number of algorithms of varying efficiency. 
Based on some basic information theoretical observations, it is 
often possible to prune large parts of the search space, and thus 



find optimal solutions. Unfortunately, the exact algorithms break 
down in some data sets with high levels of redundancy, where few 
candidate itemsets can be discarded without going back to the 
data. Finally we have presented an approximate algorithm that is 
extremely fast, even with larger values of k, while still producing 
results comparable to the optimal solution. 

Our application of choice for miki’s is as a means of filtering 
results obtained by subgroup or rule discovery. In this context 
miki’s capture the intuitive requirement that results be non-
redundant. However, one can envisage alternative intuitions that 
would inspire different filtering methods. As an example, one 
could require selected patterns to be mutually exclusive, or 
optimal with respect to further classification (wrapper approach). 
In fact any quality measure for itemsets can be applied. In future 
work we intend to compare such measures. 
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