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Abstract. Since 2008, a sensor network on a major Dutch highway
bridge has been monitoring the structural health of the bridge, by mea-
suring various parameters at different locations along the infrastructure.
These parameters include strain, vibration and climate. The aim of the
InfraWatch project is to model the health and behavior of the bridge
by analyzing the large quantities of data that the sensors produce. One
of the many forms of modeling involved is the identification of traffic
events (cars, trucks, congestion and so on), as knowing when they occur,
and of what nature they are, will enable modeling the response of the
bridge to each of these events. In this paper, we approach the problem as
a time series subsequence clustering problem. As it is known that such
a clustering method can be problematic on certain types of time series,
we verified known problems on the InfraWatch data. Indeed some of the
undesired phenomena occurred in our case, but to a lesser extent than
previously suggested. We introduce a new distance measure over subse-
quences that discourages the observed behavior and allows us to identify
traffic events reliably, even on large quantities of data.

1 Introduction

In this paper, we investigate how to build a model of traffic activity events, such
as passing vehicles or traffic jams, from measurements data collected by a sensor
network installed on a major Dutch highway bridge [5], as a part of its Structural
Health Monitoring (SHM) system.

The SHM of infrastructural assets such as bridges, tunnels and railways is
indeed an interesting problem from a data mining perspective and is proving to
be a challenging scenario for intelligent data analysis [5]. A typical SHM imple-
mentation requires the infrastructure to be equipped with a network of sensors,
continuously measuring and collecting various structural and climate features
such as vibration, strain and weather. This continuous measuring process gen-
erates a massive amount of streaming data which can be further analyzed in
order to deduce relevant knowledge about the asset’s lifetime and maintenance
demand.

This work is based on real-world data collected in the context of the In-
fraWatch project3 which is concerned with the monitoring of a large highway

3 www.infrawatch.com



bridge in the Netherlands, the Hollandse Brug. The bridge is equipped with a
network of 145 sensors measuring vibrations, strain and temperature at vari-
ous locations along the infrastructure. Moreover, a camera produces continuous
video data overviewing the actual traffic situation on the bridge. The final aim
of the project is to build a system able to assess the structural health of the
bridge over time, providing an efficient way to schedule maintenance works or
inspections.

It has been shown that the structural stress caused by heavy loads is one of
the main causes of bridge deterioration. Because of this, we focus here on mod-
eling traffic activity events in the strain measurements, such as passing vehicles
or traffic jams. The produced model can then be employed for real-time event
classification or detection of anomalous response from the bridge. Furthermore,
automatic labeling of the video data can be achieved without relying on more
expensive image processing techniques.

A single moving vehicle is represented in the strain measurements as a bump-
shaped peak (see Figure 2 (right)) with an intensity proportional to the vehicle’s
weight and a duration in the order of seconds. On the other hand, events like
traffic jams reside in significantly larger time spans and cause an overall increase
in the average strain level, due to the presence of many slow moving vehicles on
the bridge. Because we are dealing with events of varying nature, straightforward
algorithms based on peak detection will not suffice.

In order to model all the different kinds of traffic events represented in the
strain data, we investigate the effectiveness of time series subsequence clustering
[2, 4, 1, 3], which essentially employs a sliding window technique to generate input
for the chosen clustering method. However, the naive implementation of subse-
quence clustering (SSC) using a sliding window and k-Means is controversial,
as it is prone to producing undesirable and unpredictable results, as was pre-
viously demonstrated and analyzed in several publications, e.g. [4, 1, 3]. Indeed,
within our strain data application, we notice some of the mentioned phenomena,
although not all. We provide an analysis of how the different phenomena can
be explained, and why some of them are not present in the data we consider.
Finally, we introduce a novel Snapping distance measure which, employed in
SSC based on k-Means, removes the artifacts and produces a correct clustering
of the traffic events. We believe that the proposed distance measure can lead to
a rehabilitation of SSC methods for finding characteristic subsequences in time
series.

2 InfraWatch and the strain sensor data

In this section we briefly introduce the research context of our work, the In-
fraWatch project, and we describe what the strain data looks like and how the
different types of traffic activities are represented in the strain measurements, in
order to motivate the technical solutions employed in Section 3.

The bridge we focus on has been equipped by Strukton Civiel with a sensor
network in August 2008, during the maintenance works needed to make it op-
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Fig. 1. This plot shows one full week day of strain measurements. All y-axis units in
this paper are in µm/m (µ-strain).

erational and safe again, after some 40 years of service. The network comprises
145 sensors that measure different aspects of the condition of the bridge, at sev-
eral locations along it. These sensors include strain gauges (measuring horizontal
strain on various locations), vibration sensors, and thermometers (to measure
both the air and structure temperature). For more details, see [5].

As mentioned, we focus on modeling traffic events, such as vehicles passing
over the bridge or traffic jams, represented in the strain measurements. The data
is being sampled at 100 Hz which amounts to approximately 8.6 · 106 measure-
ments per sensor per day. As the sensor network is highly redundant, and the
different strain sensors are fairly correlated or similar in behavior, we selected
one sensor that is reliable and low in measurement-noise (less than 1.0 µm/m).
The strain gauge considered is placed at the bottom of one of the girders in the
middle of a 50 meter span near one end of the bridge. The strain data is thus
related to this portion of the infrastructure. Every load situated on this span will
have a positive effect, with loads in the middle of the span contributing more to
the strain than loads near the supports of the span. Figure 1 shows an overall
plot of the measurements for a single (week)day.

At the time scale of Figure 1, it is not possible to identify short term changes
in the strain level (except for notable peaks), such as individual vehicles passing
over the span. However, long term changes are clearly visible. For instance, there
is a slightly curved trend of the strain baseline which slowly develops during
a full day, which is is due to changes in temperature, slightly affecting both
the concrete and gauge properties. The sudden rise of the average strain level
between 9am and 10am is caused by a traffic jam over the bridge (as verified
by manual inspection of the video signal). A traffic jam involves many slowly
moving vehicles, which causes high vehicle densities. This in turn produces a
heavy combined load on the span, and the strain measurements record this fact
accordingly. Figure 2 (left) shows a detailed plot of the traffic jam event.

Short term changes, on the other hand, can be identified when considering a
narrower time window, in the order of seconds. A passing vehicle is represented
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Fig. 2. Detailed plots of strain, showing a traffic jam during rush hour (left) and
individual vehicles (right).

in the data by a bump-shaped peak, reflecting the load displacement as the
car moves along the bridge’s span. Figure 2 (right) shows a time window of 22
seconds where the big peak represents a truck while the smaller ones are caused
by lighter vehicles such as cars.

The examples above show how different traffic events, though all interesting
from a monitoring point of view, occur with different duration and features in
the strain data. Our aim is to characterize the different types of traffic the bridge
is subjected to by analyzing short fragments of the strain signal, in the order
of several seconds. The remainder of this paper is dedicated to the clustering of
such subsequences obtained by a sliding window.

3 Subsequence Clustering for Traffic Events Modeling

In this section we provide some basic definitions of the data model and we
introduce the rationale behind the subsequence clustering technique. We review
the known pitfalls of SSC considering the features of the strain data and we
show how its naive application produces results affected by artifacts. We finally
propose a novel distance measure for SSC designed to remove the artifacts.

3.1 Time Series and Subsequence Clustering

The data produced by a sensor of the network is a time series of uniformly
sampled values. In this work, we assume there are no missing values in the
stream produced by the sensors. Below, we give some basic definitions:

Definition 1 (Time Series). A time series is a sequence of values
X = x1, ..., xm such that xi ∈ R and m > 0.
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Fig. 3. Two plots of the same data, showing the original data as a function of time
(left), and a projection on two selected dimensions in w-space and the four prototypes
generated by k-Means (red circles). Clearly, the sliding window technique creates a
trajectory in w-space, where each loop corresponds to a bump in the original signal.

Definition 2 (Subsequence). A subsequence Sp,w of a time series
X = x1, ..., xm is the sequence of values xp, ..., xp+w−1 such that
1 ≤ p ≤ m− w + 1 and w < m.

Definition 3 (Subsequences Set). The subsequences set D(X,w) = {Si,w |
1 ≤ i ≤ m − w + 1} is the set of all the subsequences extracted by sliding a
window of length w over the time series X.

The subsequences set D(X,w) contains all possible subsequences of length w of a
time series X. The aim of subsequence clustering is discovering groups of similar
subsequences in D(X,w). The intuition is that, if there are repeated similar
subsequences in X, they will be grouped in a cluster and eventually associated
to an actual event of the application domain.

3.2 Subsequence Clustering equals Event Detection?

Subsequence clustering is an obvious and intuitive choice for finding character-
istic subsequences in time series. However, in a recent paper by Keogh et al.
[4], it was shown that despite the intuitive match, SSC is prone to a number
of undesirable behavior that make it, in the view of the authors, unsuitable for
the task at hand. Since then, a number of papers (e.g. [3] and [1]) have further
investigated the observed phenomena, and provided theoretical explanations for
some of these, leading to a serious decline in popularity of the technique. In
short, the problematic behavior was related to the lack of resemblance between
the resulting cluster prototypes and any subsequence of the original data. Pro-
totype shapes that were observed were collections of smooth functions, most
notably sinusoids, even when the original data was extremely noisy and angular.
More specifically, when the time series were constructed from several classes of
shorter time series, the resulting prototypes did not represent individual classes,
but rather were virtually identical copies of the same shape, but out of phase.
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Fig. 4. Multiple representation of events. The left plot shows the prototypes computed
by the classic k-Means. The right plot shows the portion of the data assigned to the
two bump-shaped prototypes.

Finally, it was observed that the outcome of the algorithm was not repeatable,
with different random initializations leading to completely different results.

The unintuitive behavior of SSC can be understood by considering the nature
of the subsequence set D(X,w) that is the outcome of the initial sliding window
step. Each member of D(X,w) forms a point in a Euclidean w-dimensional
space, which we will refer to as w-space. As each subsequence is fairly similar
to its successor, the associated points in w-space will be quite close, and the
members of D(X,w) form a trajectory in w-space. Figure 3 shows an example
of a (smoothed) fragment of strain data, and its associated trajectory in w-
space (only two dimensions shown). Individual prototypes correspond to points
in w-space, and the task of SSC is to find k representative points in w-space
to succinctly describe the set of subsequences, in other words, the trajectory.
Figure 3 (right) also shows an example of a run of k-Means on this data. As the
example demonstrates, the prototypes do not necessarily lie along the trajectory,
as they often represent (average) a curved segment of it.

So how does SSC by k-Means fare on the strain data from the Hollandse
Brug? Experiments reported in Section 4 will show that not all the problematic
phenomena are present in clustering results on the strain data. In general, clus-
ter prototypes do resemble individual subsequences, although some smoothing
of the signal as a result of averaging does occur, which is only logical. The rela-
tively good behaviour can be attributed to some crucial differences between the
nature of the data at hand, and that used in the experiments of for example [4,
3]. Whereas those datasets typically were constructed by concatenating rather
short time series of similar width and amplitude, the strain data consists of one
single long series, with peaks occurring at random positions. Furthermore, the
strain data shows considerable differences in amplitude, for example when heavy
vehicles or traffic jams are concerned. There remains however one phenomenon
that makes the regular SSC technique unsuitable for traffic event modeling: the
clustering tends to show multiple representations of what is intuitively one sin-
gle event (see Figure 4 for an example). Indeed, each of the two bump-shaped



prototypes resembles a considerable fraction of the subsequences, while at the
same time having a large mutual Euclidean distance. In other words, our notion
of ’traffic event’ does not coincide with the Euclidean distance, which assigns
a large distance to essentially quite similar subsequences. In the next section,
we introduce an alternative distance measure, which is designed to solve this
problem of misalignment.

3.3 A context-aware distance measure for SSC

As showed in the previous section, applying SSC to the strain data employing the
classic k-Means leads to undesirable multiple representations of the same logical
event. The problem is that comparing two subsequences with the Euclidean
distance does not consider the similarity of their local contexts in the time series.
Below we introduce a novel distance measure which finds the best match between
the two compared subsequences in their local neighborhood.

Given a time series X and two subsequences Sp,w ∈ X and Sfixed of length
w, we consider not only the Euclidean distance between Sfixed and Sp,w, but
also between Sfixed and the neighbor subsequences, to the left and to the right,
of Sp,w. The minimum Euclidean distance encountered is taken as distance value
between Sp,w and Sfixed.

Formally, given a shift factor f and a number of shift steps s, we define the
neighbor subsequences indexes of Sp,w as

NS = {p+
fw

s
· i | −s ≤ i ≤ s}

The extent of data analyzed to the left and to the right of Sp,w is determined
by the shift factor while the number of subsequences considered in the interval
is limited by the shift steps parameter. The Snapping distance is finally defined
as:

Snapping(Sp,w, Sfixed) = min{Euclidean(Si,w, Sfixed) | i ∈ NS} (1)

We want to employ the Snapping distance in a SSC scheme based on k-Means.
k-Means is a well known clustering/quantization method that, given a set of
vectors D = {x1, ..., xn}, aims to find a partition P = {C1, ..., Ck} and a set of
centroids C = {c1, ..., ck} such that the sum of the squared distances between
each xi with its associated centroid cj is minimized.

The classic k-Means heuristic implementation looks for a local minimum by
iteratively refining an initial random partition. The algorithm involves four steps:

1. (initialization) Randomly choose k initial cluster prototypes c1, ..., ck in D.
2. (assignment) Assign every vector xi ∈ D to its nearest prototype cj accord-

ing to a distance measure. The classic k-Means uses the Euclidean.
3. (recalculation) Recalculate the new prototypes c1, ..., ck by computing the

means of all the assigned vectors.
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Ck

Fig. 5. A subsequence Sp,w is compared against the centroid Ck. The minimum eu-
clidean distance between Ck and the neighbor subsequences of Sp,w, including itself, is
taken as a distance. In this example, the best match is outlined in gray at the right of
Sp,w.

4. Stop if the prototypes did not change more than a predefined threshold or
when a maximum number of iterations has been reached, otherwise go back
to step 2.

In our SSC scheme, the set of vectors D to be clustered is the subsequences
set D(X,w), where X is a time series and w the sliding window’s length. In
the assignment step, we employ the Snapping distance defined in Equation 1.
Moreover, we force the initialization step to choose the random subsequences
such that they do not overlap in the original time series. Figure 5 illustrates
the intuition behind the Snapping distance measure in the context of k-Means
clustering.

In the next section we evaluate this SSC scheme on the InfraWatch strain
data.

4 Experimental evaluation

In this section we introduce the experimental setting and we discuss the results
of applying the SSC scheme defined in Section 3.3 to the strain data.

We considered the following strain time series: 100Seconds has been col-
lected during the night in a period of low traffic activity across the Hollandse
Brug, and consists of 1 minute and 40 seconds of strain data sampled at 100
Hz. The series contains clear traffic events and does not present relevant drift
in the strain level due to the short time span. A more substantial series, Full-
WeekDay, consists of 24 hours of strain measurements sampled at 100 Hz,
corresponding to approximately 9 millions values. The data has been collected
on Monday 1st of December 2008, a day in which the Hollandse Brug was fully
operational. All the traffic events expected in a typical weekday, ranging from
periods of low activity to congestion due to traffic jams, are represented in the
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Fig. 6. Improved results using the Snapping distance (see Figure 4).

data. The temperature throughout the chosen day varied between 4.9 and 7.7
degrees. Figure 1 shows an overall plot of the data.

In order to run the defined k-Means SSC scheme, we need to fix a number
of parameters. The window length w has been chosen to take into account the
structural configuration of the bridge and the sensor network. Considering the
span in question is 50 meters long, and a maximum speed of 100 km/h, a typical
vehicle takes in the order of 2.5 seconds to cross the span. In order to capture
such events, and include some data before and after the actual event, the window
length was set to 400, which corresponds to 4 seconds.

The number of clusters k directly affects how the resulting prototypes cap-
ture the variability in the data. For the 100Seconds data we found k = 3 a
reasonable choice because, considering its short duration, the time series does
not present drift in the strain baseline and the variability in the data can be
approximated by assuming three kind of events: no traffic activity (baseline)
and light and heavy passing vehicles. On the other hand, the FullWeekDay data
presents much more variability, mostly due to the drift in the measurements
which vertically translates all the events to different levels depending on the ex-
ternal temperature. Moreover, traffic jams cause ulterior variability in the data.
In the FullWeekDay, we found k = 10 to be large enough for accounting most of
the interesting, from a SHM point of view, variations in the time series thought
we will also show the result with k = 4 for comparison.

The f parameter affects the size of the neighborhood of subsequences consid-
ered by the Snapping distance. As the neighborhood gets smaller, the Snapping
distance converges to the Euclidean. A big neighborhood could include, on the
other hand, subsequences pertaining to other events. We experimented with
f = 0.25, f = 0.5 and f = 0.75, with comparable outcomes. The presented
results were all computed setting f = 0.5.

The shift steps parameter poses a limitation on the number of Euclidean
distances to compute for each comparison of a subsequence with a centroid; we
fix it to s = 10.
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Fig. 7. Prototypes produced by applying k-Means respectively with the Euclidean and
the Snapping distance on the FullWeekDay data, for both k = 4 (left) and k = 10.

4.1 Results

Given the chosen parameters, we run both the classic k-Means SSC and the
version based on the Snapping distance on the 100Seconds and FullWeekDay
data.

In Figure 4, we already showed, using the 100Seconds data, the double rep-
resentation problems affecting the classic k-Means SSC. Figure 6 depicts the
results obtained by applying, on the same data, the k-Means SSC based on
the Snapping distance. It is clear from the picture that, in this case, the big
bump-shaped peak, caused by a heavy passing vehicle, is represented by a single
prototype, while the remaining prototypes model respectively light passing ve-
hicles and the strain baseline (whose assignments are not shown in the picture).

Figure 7 shows the resulting prototypes obtained from the FullWeekDay data,
respectively for k = 4 (left) and k = 10 (right). The prototypes computed for
k = 4 by both the classic and revised k-Means SSC are really similar. Setting
k = 4 does not account for all the variability in the FullWeekDay data and the
resulting prototypes try to represent the different strain levels more than the
actual events. In this case, the effect of considering the neighborhood of each
subsequence, as done by the Snapping distance, is dominated by the presence
of large differences in the strain values.

The prototypes for k = 10, instead, better describe the variability in the data
and represent both the different strain levels as well as the individual events
(peaks). In this case, the classic k-Means SSC introduces double representations
of the same logical events. This is avoided in our revised solution, thus better
representing the variability in the data: every prototype now models a different
strain level or event, as shown in Figure 7 (right).

Although Figure 7 gives an idea of the differences between the prototypes
produced by the classic k-Means SSC and the Snapping version, it does not
show how the data is subdivided across them. Figure 8 shows two examples, at
different time scales, of events associated to a single prototype. The plot on the



Fig. 8. Two examples of events represented by individual prototypes. The central point
of an associated subsequence is drawn in black.

left shows a heavy passing vehicle (in black), while the plot on the right shows
all the subsequences considered part of a traffic jam event.

4.2 A scalable implementation

Given the amount of data generated by the sensor network, it is important to
have a very scalable implementation of our clustering method. Therefore, we
have developed a parallelized version based on the MapReduce framework using
Hadoop [6]. Indeed, the main bottleneck in clustering lies in calculating the
(snapping) distances between every subsequence and the cluster centers, which
need to be read from disk. With MapReduce, we can distribute the data reads
over a cluster of machines.

An overview of the resulting system is shown in Figure 9. In the first stage,
we ‘massage’ the data to prepare it for the clustering phase. Since the comput-
ing nodes work independently, they need to be passed complete subsequences,
including the lead-in and lead-out, in single records. First, we read the measure-
ments of a single sensor for every timestamp, and its value is mapped to the initial
timestamp ts of every subsequence in which it occurs. Then, all measurements
for a specific ts are reduced to a complete subsequence.

In the clustering phase, we first select k random centroids. Then, each subse-
quence is mapped to the nearest centroid, using the snapping distance, together
with the combined points mapped by the same mapper. The reducer receives all
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Fig. 9. MapReduce implementation of our clustering method. Every map or reduce
task can be run on any available computing core.



points mapped to a certain cluster and calculates the new cluster centroid. This
is repeated n times or until the clusters converge. The kMeans implementation
is an adapted version of kMeans found in the Mahout library.4

Experimentation with this implementation on a relatively small cluster of
5 quad-core nodes already showed a significant speed-up. The clusters for the
FullWeekDay (see Figure 7, right), were calculated 6 times faster than a sequen-
tial version which loaded all points in memory. Results on 10 times more data
clearly showed a linear (actually, slightly sublinear) increase in computing time.

5 Conclusion

In this paper we have focused on the problem of identifying traffic activity events
in strain measurements, as produced by a sensor network deployed on the Hol-
landse Brug. Characterizing the response of the bridge to various traffic events
represents one of the steps in the design of a complete SHM solution, as it will
permit future implementations of real-time classification or anomaly discovery
techniques.

The proposed solution is based on subsequence clustering, a technique shown
to be prone to undesired behaviors and whose outcome is strongly dependent on
the kind of data it is applied to. In view of this, we studied SSC in relation to the
features of the strain data, showing that only some of the documented pitfalls
(the multiple representations) occur in our case. To solve this, we introduced a
context-aware distance measure between subsequences, which accounts for their
local neighborhoods while computing the similarity. Employing the Snapping
distance, we showed that SSC by k-Means returns a correct modeling of the
traffic events.
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2. F. Höppner. Time series abstraction methods - a survey. In Informatik bewegt:
Informatik 2002 - 32. Jahrestagung der Gesellschaft für Informatik e.v. (GI), pages
777–786. GI, 2002.
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