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Abstract In this paper, we provide initial Data Mining results on four 
sets of genetic data, collected in the context of the new European 
Embryonal Tumour Pipeline project. These data sets provide different 
views on the genetic processes involved in the genesis and development 
of a specific type of tumour, known as neuroblastoma. Although the 
project involves other types of tumours as well, with potentially similar 
underlying causal processes, neuroblastoma is currently the only 
disease for which sufficient data has been collected to analyse. We 
provide results on this data using systems developed at two Data 
Mining groups in Europe, with the aim of introducing the different Data 
Mining challenges involved, and outlining the approach we intend to 
apply throughout the project. Our descriptions focus on the analysis of 
individual data sets, stemming from separate analysis platforms (e.g. 
Affymetrix microarrays). Additionally, we provide some pointers for 
doing cross-platform analysis in the future. 

1 Introduction 

In this paper we give an overview of the many Data Mining challenges involved in 
a new EU-funded project called the European Embryonal Tumour Pipeline (EET 
Pipeline in short). The EET Pipeline attempts to improve treatment of a group of 
cancers affecting infants and small children through channelling information extracted 
from high-throughput molecular profiling of these tumours into pipelines to validate 
targets for novel therapy and diagnostic development. As cancer is the second cause 
of deaths (after accidents) among children in Europe, this is an important goal, and 
Data Mining will play a crucial role in the extraction of knowledge from the large 
quantities of data produced in this project. As the project has started only recently, we 
do not intend to give a complete report of the results obtained, but rather provide 
insights in the intended approach, and show promising initial results. The aim of this 
paper is to outline the types of data available, the Data Mining challenges that result 



from this data, and some of the techniques we are employing to deal with these 
challenges. Specifically, we are considering the embryonal tumour neuroblastoma 
(reviewed in [3]), for which extensive molecular data is already available within the 
project. In Section 5 of this paper, we provide initial results for this illness. As the 
remaining tumour types will involve similar types of data, the results reported here 
will give a good indication of the activities that will be performed throughout the 
project. However, data for these other tumour types will only become available in 
later stages of the project. 

One of the main characteristics of the project is its integrated approach towards 
embryonal tumours. This integration takes the form of a unified approach across 
tumour types. Furthermore, for all tumours, we are gathering data through a range of 
high-throughput analysis platforms, providing multiple views on the biological 
processes involved in the development of tumours. The analysis platforms include 
microarrays for gene and microRNA expression, ArrayCGH for chromosomal 
deletion and multiplication, and mass-spectrometry for proteomics. The diverse nature 
of these different data sources, in terms of data structure, is a first challenge, which 
we address in this paper by demonstrating how our analysis techniques can be applied 
to individual data sources. Further challenges lie of course in the integrated analysis 
of data across analytic platforms, either by combining data sources into rich unified 
descriptions of patients and tumour tissue, or by integrating the knowledge that is 
extracted using platform-specific techniques. We provide some pointers as to these 
activities in Section 6. 

The two analysis systems we are employing are the results of years of Data 
Mining research at Utrecht University and the Jožef Stefan Institute (JSI) respectively 
(affiliations 1 and 2 in the author list). Both flavours of Data Mining can be 
characterised by a strong emphasis on interpretability of the models created. We are 
focusing on results that make sense to a domain expert and that lead to new insights 
about the underlying genetic processes, rather than on inducing a black box with high 
predictive accuracy per se. Both systems are generic Data Ming tools, with broader 
application than just biology. The first system, Safarii [7, 11], was developed at 
Utrecht University and Kiminkii, a Dutch company owned by the last author. It is 
based on the discovery of patterns such as rules and interesting subgroups, and 
combining these patterns into classifiers using a number of techniques such as Pattern 
Teams [8] or Support Vector Machines. A specific forte of Safarii is the support for 
Multi-Relational Data Mining, a technique that allows the integration of data from 
different sources. The second system, developed in cooperation between the 
Katholieke Universiteit Leuven and the JSI, implements a tree-based approach known 
as Predictive Clustering Trees (PCTs) [1]. Such trees combine the benefits of 
clustering with those of tree-based classification methods. Of specific interest in this 
context is the ability to induce multi-target PCTs, trees that are optimised for multiple 
targets (e.g. tumour subtype and developmental stage) at the same time. We describe 
and demonstrate both systems in Section 4. 

2 Neuroblastoma 

Neuroblastoma is the most common extracranial solid tumour of childhood, and 
88% of neuroblastoma patients are 5 years or younger. Neuroblastoma demonstrates 



many features of common interest to cancer, such as spreading of the cancer and the 
development of resistance to chemotherapy. However, due to its manifestation early 
in life, it presents an excellent model to study genetically based changes leading to 
cancer, relatively free from the influence of environmental factors. Additionally, the 
embryonal tumours, to which neuroblastoma belongs, also are unique in the high 
incidence of spontaneous regression and differentiation of the tumours. The 
understanding of how this "self-cure" mechanism works may also be applicable to 
develop new treatment strategies for other cancers. Treatment of neuroblastomas with 
polychemotherapy provokes good initial response, regardless of tumour stage. 
However, two major problems of the current treatment regimen exist. Disseminated 
(cancer spread throughout the body) stage 4 tumours frequently relapse due to 
minimal residual disease arising from a few resistant tumour cells, resulting in poor 
overall survival rates (<35%). On the other hand, overtreatment of MYCN-
nonamplified stage 2 or 3 tumours causes most of the surviving patients to suffer from 
significant organ toxicity or develop secondary malignancies later in life, reducing 
their quality of life. Novel strategies to more precisely diagnose and treat 
neuroblastoma are urgently needed to improve this situation. With the recent advent 
of high-throughput technologies, it is now possible to assess the tumour at multiple 
biological levels, including the genome, transcriptome and proteome. The large 
amounts of molecular information resulting from these analyses holds the promise of 
not only a better understanding of neuroblastoma biology and progression, but also 
the identification of molecules that can be targeted for therapy and used to better 
tailor treatment for a personalised diagnosis. 

3 Data Sources 

For neuroblastoma tumour samples and patient serum, a total of four data sets 
have been collected (being ArrayCGH, Affymetrix microarray, MicroRNA and 
SELDI Mass Spectrometry data). In this section, we will discuss the characteristics of 
each of these separately, and assess their potential and problems. First, we will give a 
description of the target concepts that we want to investigate. Then we will address 
the characteristics of each data set. 

Target concepts for Investigation 
The data from the EET Pipeline project leads to a range of potentially interesting 

target concepts for Data Mining. With space limitations in mind, we have selected 
two targets for this paper that are of interest to the domain experts: clinical course 
(NBstatus) and neuroblastoma stage (Stage).  

Clinical Course: Domain experts rate this as being one of the most interesting 
target concepts for investigation. The clinical course NBstatus lists the patients last 
recorded follow up status, being either ‘alive without event’, ‘alive with 
relapse/primary tumour’ or ‘deceased’. Since only deceased patients in the data who 
died as result of a relapse or primary tumour were chosen for analysis here, we can 
make a binary comparison by testing ‘alive without event’ versus the rest. 

If Data Mining can succeed in showing correlations between, for example, gene 
expression levels in the tumour or protein levels in the blood and relapse, an ‘early 



warning system’ can be constructed, identifying patients with a high risk of relapse 
before they actually suffer from it. 

Stage: The INSS staging system developed for neuroblastoma tumours is the 
standard in Europe, the U.S. and Japan [4]. It categorises tumours into several stages 
based on clinical characteristics, numbered 1 through 4 with 4 being the most severe. 
All tumours from children under one year of age but limited metastases to liver, bone 
marrow or skin (never bone) are classified into a special stage, known as 4s. These 
patients have a very good prognosis for recovery. The majority of tumours from this 
patient subset undergo spontaneous regression even with little or no chemotherapy 
treatment. Patients diagnosed with stage 4 tumours, however, often succumb to their 
disease despite aggressive multimodal therapy. We attempt to determine whether Data 
Mining can deliver more information about molecular characteristics specific for 
certain clinical subgroups of neuroblastoma. As a starting point, we will only consider 
the task of distinguishing less severe neuroblastoma subgroups (stages 1, 2, 3 and 4s) 
from stage 4. 

Data Sets 
Affymetrix Expression Profiling Affymetrix is one type of array platform to 

conduct expression profiling. The probes on the microarray recognise one or more 
short areas of a specific gene transcript. The signals measured give information about 
how many RNA transcripts of which genes are present in the sample, which is a 
measure of gene activity. Expression was analysed in 63 primary neuroblastomas 
using the Affymetrix U95Av2 oligonucleotide microarrays. These data are included in 
the 68 patients analysed in [12]. This array measures the expression levels for a total 
of 12625 probes (genes). 

ArrayCGH Array-based Comparative Genomic Hybridization (ArrayCGH) 
analyses the status of the whole genome of a tissue sample. It is known that certain 
segments of the DNA in the chromosomes are often altered in neuroblastomas [14, 9]. 
Possible genomic alterations include amplifications or deletions in distinct areas of 
certain chromosomes (including several genes) and even multiple copies of the 
complete chromosome complement in the cell (trisomy). ArrayCGH utilizes DNA 
probes of varying sizes to represent all areas of the genome in different levels of 
detail. These probes are Bacterial Artificial Chromosomes (BAC's), and analysis 
detects the number of copies of the DNA region corresponding to a BAC that is 
present in the tumour sample relative to the normal DNA complement of two copies. 
The data is represented as negative or positive real numbers, showing deletion or 
amplification, respectively. 

Our data set includes ArrayCGH analysis of 19 primary neuroblastomas. These 19 
tumours were among the 23 analysed in [14]. Unfortunately, four patients had to be 
disregarded in the current analysis, since Stage and NBstatus information could not be 
obtained. For each tumour there are 6228 attributes (the BAC's). However, the data 
contain many missing values. Specifically, data for certain BAC's are missing for all 
tumours analysed. Removing those, we end up with only 4820 attributes that have a 
value for at least one patient. 

MicroRNA Expression Profiling The expression of small, non-coding regulatory 
RNAs, or microRNAs (miRNAs), can also be analysed using a microarray platform. 
MicroRNAs inhibit the expression of specific groups of genes via sequence specific 



binding of the mRNA molecule, inhibiting translation into the protein. The probes on 
these types of array measure the expression of miRNAs, which are short RNA 
molecules (about 21-23 nucleotides long).  

The data set contains measurements from 25 primary neuroblastomas. The 
tumours were analysed on a 2-channel cDNA array with probes for 384 miRNAs 
[13].  Two records come from different tissue samples from the same tumour (so there 
are 24 unique patients). For all patients we have the Stage information. Unfortunately, 
there is NBstatus information available for only 13 patients. Each patient is 
characterised by 384 attributes (miRNAs) indicating the deviation in activity from the 
average case. 

SELDI Mass Spectrometry Surface-Enhanced, Laser Desorption/Ionisation 
Mass Spectrometry (SELDI MS) data is a different type of data. The mass 
spectrometer measures the amount and size (in Daltons) of all proteins in a complex 
protein mixture using time-of-flight (TOF) detection. The serum from 43 
neuroblastoma patients at the time of diagnosis were fractionated on anion-exchange 
columns and profiled on metal-binding arrays (IMAC-Cu++) using SELDI-MS. Both 
Stage and NBstatus information were available for these patients. Data from this 
analysis is expressed as mass-to-charge ratios (m/z). Mapping these m/z data to a 
specific protein identity is a non-trivial task requiring further chemical purifications 
and analyses of a larger sample amount. Only data produced from serum fraction 1 
were used here. 

4 Methods 

Predictive Clustering Trees 
Predictive modelling aims at constructing models that can predict a target property 

of an object from a description of the object. Predictive models are learned from sets 
of examples, where each example has the form (D, T), with D being an object 
description (or set of attributes of that object) and T a target property value. While a 
variety of representations ranging from propositional to first order logic have been 
used for D, T is almost always considered to consist of a single target attribute called 
the class, which is either discrete (classification problem) or continuous (regression 
problem). 

Clustering, on the other hand, is concerned with grouping objects into subsets of 
objects (called clusters) that are similar with respect to their description D. There is no 
target property defined in clustering tasks. In conventional clustering, the notion of a 
distance (or conversely, similarity) is crucial: examples are considered to be points in 
a metric space and clusters are constructed such that examples in the same cluster are 
close according to a particular distance metric.  

Predictive clustering [1], the analysis paradigm of our interest, combines elements 
from both prediction and clustering. As in clustering, we seek clusters of examples 
that are similar to each other, but in general taking both the descriptive part and the 
target property into account. In addition, a predictive model must be associated to 
each cluster. The predictive model assigns new instances to clusters based on their 
description D and provides a prediction for the target property T. It should be noted 



that in this predictive clustering setting, the target T is not necessarily a single value, 
but rather a set of target attributes. 

Also a distinction is made between the target attributes T and clustering attributes 
C. The distance measure is calculated on C ∪ T, i.e., we produce models that are 
trying to correctly predict the attributes in both T and C. The difference between the T 
and C attributes is purely in the semantic for the end-user.  The user is interested in 
the accuracy of the target attributes T, while the clustering attributes are included in 
the model building process in order to improve it. That is why in the results section 
we only report the accuracy of the obtained models for the target attributes T.  

A well-known type of model which is used for the predictive clustering paradigm 
is a decision tree [10]. A decision tree that is used for predictive clustering is called a 
predictive clustering tree (PCT). Each node of a PCT represents a cluster. The 
conjunction of conditions on the path from the root to that node gives a description of 
the cluster. Essentially, each cluster has a symbolic description in the form of a rule 
(IF conjunction of conditions THEN cluster), while the tree structure represents the 
hierarchy of clusters. 

A generic system for constructing PCTs is available in the Clus system, which can 
be obtained at “http://www.cs.kuleuven.be/~dtai/clus”. 

Safarii 
Safarii [11] is a Multi-Relational Data Mining system that has been developed 

over the last year at Utrecht University and Kiminkii, primarily by the last author and 
colleagues. It includes a range of Data Mining techniques, as well as general facilities 
for dealing with large (multi-relational) data stored in relational databases. The 
primary approach for data analysis that is relevant to the domain at hand is centred 
around the discovery of regularities such as rules or interesting subgroups, which we 
will refer to in general as patterns [5, 12]. Such patterns may capture interesting, but 
possibly incomplete, knowledge concerning the influence of specific genes on a 
selected target (e.g. neuroblastoma vs. healthy), or the interaction of two or more 
genes, to name but a few examples. After such patterns have been discovered, they 
can be combined into more ambitious models of the biological processes that involve 
multiple patterns. Such global models can be used as classifiers in a black-box setting, 
for example to aid the diagnosis of tissue from new (suspected) patients. More 
importantly, by focussing on fairly simple and understandable patterns and the 
interaction between them, our approach aims to produce useful insights into the 
dynamics of the domain. 

For combining patterns into global models, Safarii offers a number of reasonably 
well-known classifiers, notably Support Vector Machines (SVM) and Decision Table 
Majority (DTM) classifiers [8]. It is important to note that we are applying these 
classifiers not directly to the original data, but rather to the set of patterns that was 
previously discovered. In a sense, the patterns are treated as new constructed features, 
which are guaranteed to be predictive because they are the result of a mining 
operation themselves. The benefit of this approach is that the classifiers are 
constructed of pieces of knowledge that are intelligible and informative, compared to, 
for example, the application of SVMs to the data directly, which produces classifiers 
that are notoriously hard to interpret. 



A possible downside of the pattern discovery approach is the potentially large 
number of patterns reported. Especially in genetic data, where it is not uncommon for 
many genes to be correlated, many possible patterns may be found, involving a range 
of genes that essentially capture the same aspect of the biological process. Safarii 
offers substantial facilities for dealing with this redundancy in sets of patterns. A 
technique known as Pattern Teams [8] selects out of the original large set of patterns, 
a small but informative subset of patterns, where each pattern adds something unique 
to the team. 

Due to the small volumes of data, we are forced to work with fairly simple 
patterns, typically only including a single gene or location in the mass-spectrum. With 
larger data sets, and therefore less risk of overfitting, there is nothing that would 
prevent us from discovering more complex patterns. Note that possible interactions 
between genes are also captured during the combination into classifiers or teams, 
reducing the need for finding these interactions immediately. As a further limit on the 
complexity and expressiveness of our models, we will build Pattern Teams involving 
only few patterns. Small teams have the further advantage that they can be easily 
visualised, aiding the understanding and communication of findings. 

5 Results 

We have analysed all four dataset with the two systems at our disposal. In the interest 
of space however, we only demonstrate the results for two arbitrarily selected datasets 
per analysis technique: MicroRNA and SELDI-MS in the case of Safarii, and 
Affymetrix microarray and ArrayCGH in the case of Predictive Clustering Trees. 
Predictive models were built for NBstatus and Stage attributes. Additionally, we 
utilised the ability of PCTs for multi-target prediction and constructed predictive 
models which take into account other patient information (e.g. MYCN amplification). 
Comparisons were made between the single and multi-target prediction models.  

Affymetrix (PCTs) When analysing the Affymetrix microarray data, two target 
attributes were taken into account: NBstatus and Stage. As it can be seen in Table 1 
and Table 2, when trying to do a single target prediction for NBstatus and Stage, the 
accuracy obtained from the ten-fold cross-validation was a little better (for NBstatus) 
or worse (for Stage) than the default distribution. 

In order to improve the performance when building PCTs, we included as 
clustering attributes other patient information which was previously shown [9] to be 
connected to the outcome of the disease. Those attributes were deletion of the 1p 
chromosome region and amplification of the MYCN gene. Figure 1 shows a PCT 
which is built when considering NBstatus as target and 1p deletion as a clustering 
attribute. As any decision tree model, a PCT can be easily interpreted. The first node 
of the tree, with attribute 40235_at (TNK2, ‘tyrosine kinase, non-receptor, 2’), splits 
the samples into two groups. In the first group there are patients with ‘alive without 
event’ and ‘no deletion’ of the 1p chromosome region. The remaining group is split 
by a node (34480_at, CDH16, ‘cadherin 16, KSP-cadherin’) of the PCT that 
essentially distinguishes between patients that have/do not have a 1p deletion. The last 
node (g32415_at, IFNA5, ‘interferon, alpha 5’) further differentiates between the 
patients with 1p deletion that had a relapse (i.e., ‘alive with relapse/primary tumour’ 
or ‘deceased’) or are ‘alive without event’. 



From Table 1 it can be seen that including 1p deletion and MYCN amplification as 
clustering attributes significantly improved the predictive performance of the 
constructed PCTs. The results in Table 2 show that for Stage, it is extremely difficult 
to build a predictive model which will surpass the default distribution (probability of 
the majority class), except for the last case when as a clustering attribute NBstatus is 
included. Considering the initial distribution, which is skewed, and the few Stage 4 
cases, the learning of a predictive model is a difficult task. 

 

Figure 1. PCT constructed for T = NB status and C = 1p 

Table 1. Results from a 10-fold cross-validation for NBstatus 

Target and Clustering attributes default acc. (%) PCTs acc. (%) 
T = NBstatus 71.4 74.6 
T = NBstatus, C = 1p 71.4 90.5 
T = NBstatus, C = MYCN 71.4 84.1 
T = NBstatus, C = 1p, MYCN 71.4 74.6 
T = NBstatus, C = Stage 71.4 82.5 

Table 2. Results from a 10-fold cross-validation for Stage 

Target and Clustering attributes default acc. (%) PCTs acc. (%) 
T = Stage 79.3 77.7 
T = Stage, C = 1p 79.3 73.0 
T = Stage, C = MYCN 79.3 74.6 
T = Stage, C = 1p, MYCN 79.3 77.7 
T = Stage, C = NBstatus 79.3 80.9 

 
ArrayCGH (PCTs) For the ArrayCGH data, a similar analysis was performed. 

The same target and clustering attributes were taken into account. As is evident from 
the results in Table 3 and Table 4, it proved to be very difficult to build PCTs with 
accuracy higher than the default. Including multiple attributes did not significantly 
improve the accuracy. The small sample size (19) and the initial class distribution 



(only 3 “Stage4” samples) of this particular dataset make building accurate PCTs and 
predictive models difficult.  

Table 3 Results from a 10 fold cross validation for NBstatus 

Target and Clustering attributes default acc. (%) PCTs acc. (%) 
T = NBstatus 73.6 73.6 
T = NBstatus, C = 1p 73.6 78.9 
T = NBstatus, C = MYCN 73.6 73.6 
T = NBstatus, C = 1p, MYCN 73.6 73.6 

Table 4 Results from a 10-fold cross-validation for Stage 

Target and Clustering attributes default acc. (%) PCTs acc. (%) 
T = Stage 84.2 89.4 
T = Stage, C = 1p 84.2 89.4 
T = Stage, C = MYCN 84.2 84.2 
T = Stage, C = MYCN, 1p 84.2 84.2 
T = Stage, C = NBstatus 84.2 84.2 

 
MicroRNA (Safarii) As a demonstration of the kind of knowledge that can be 

discovered with Safarii, we show some results for Stage. For the MicroRNA data, the 
top 100 patterns (in this case most differentially expressed probes) were identified 
using Safarii’s Subgroup Discovery algorithm. The resulting patterns are ranked 
according to the novelty measure (a.k.a ‘weighted relative accuracy’) [5, 7]. A 
minimum coverage of 6 patients was applied. For reducing the redundancy, we then 
applied the Pattern Team technique to the 100 patterns, producing a team of two 
essential probes. It reports a combination of the 2nd and 96th pattern: 

 
Pattern Rank Coverage Novelty Condition list 

2 9 0.14 hsa-mir-92 ≥ -1.04 
96 6 0.096 ambi-mir-7102 ≥ 0.07 

 
A Pattern Team of size two can be easily visualised in a scatter plot, as 

demonstrated below. The two thresholds for the patterns involved are shown as the 
horizontal and vertical lines. Clearly, the lines separate the patients into three distinct 
clusters that appear to coincide with the target concept specified. This plot clearly 
demonstrates how the selected approach finds multivariate interactions that are 
relevant to this tumour type. Analysis of these array results using the SAM algorithm 
also identified hsa-mir-92 part as the most important miRNA associated with MYCN-
amplified neuroblastomas (submitted). This miRNA was also identified as the first 
"oncomir", or miRNA which can act as an oncogene to potentially induce several 
tumour types [6]. 

Analogous results can of course be obtained for the NBstatus, our second target 
concept. 
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SELDI-MS (Safarii) For the SELDI-MS data some extra pre-processing was 

required. To reduce the effects of noise in the data as a consequence of the 
measurement process, a data smoothing procedure was applied, based on a Gaussian 
Kernel. We used the approach given by [2]. For our analyses, the kernel width was set 
to 101 data points (50 below the data point we want to smooth, the point itself, and 50 
above). After that we reduced the resolution of the total spectrum, since it has around 
56000 data points for each patient. We did this by selecting every 25th data point from 
the smoothed spectrum, resulting in a little over 2200 data points for each serum. 

Again, the Subgroup Discovery algorithm was run with the same settings as for 
the MicroRNA data, creating 100 patterns for Stage 4 versus other stages. In the 
figure below, we show part of the (pre-processed) spectrum in the area of one of the 
patterns discovered, as an example. The two curves represent the averages of the stage 
4 group (the lower line) and the remaining stages (the upper line). The vertical line 
corresponds to the second pattern found: 

 
Pattern Rank Coverage Novelty Condition list 

2 13 0.11 2981.60 m/z ≤ 15.0 
 
It is interesting to observe that our method does not necessarily select locations 

corresponding to peaks in the spectrum. Although peaks obviously correspond to 
specific proteins, some of which may be related to the difference between stages, 
apparently the exact optimum of such a peak is not guaranteed to be the most 
informative. As the figure demonstrates, peaks overlap to some degree, and subtle 
peaks may therefore not appear as actual optimums in the spectrum. The upper line in 
this figure shows a bump between the two adjacent peaks which is clearly missing in 
the stage 4 patients. Although this location does not seem promising at first hand, our 
method is able to identify such cases. This is in contrast to other methods (statistical 
and modified SVM) that have been used to analyse these data, which were incapable 
of analysing differences between neuroblastoma subtypes and could only be used to 
analyse neuroblastoma vs. healthy or related tumour patients (different targets). 



�

We would like to add that simply taking the average over a group (as is done in 
the figure) does not necessarily give good insight into the distribution of individual 
values. As an alternative, we again show a scatter plot for a predictive pair of patterns:  

 
Pattern Rank Coverage Novelty Condition list 

3 19 0.11 12146.17 m/z ≥ 7.4 
24 21 0.10 9820.63 m/z ≤ 13.28 
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6 Conclusion and Future Developments 

We have presented initial Data Mining results for a number of data sets related to 
neuroblastoma, in the context of the EET Pipeline project. For some of these, the 
methods that we used were able to construct good predictive models for the targets of 



interest. For others, the small sample size and the prior distribution made the task of 
constructing good predictive models challenging. At this stage, we have only 
considered the analysis of data sets separately. The ultimate goal of the project is to 
combine data sets and thus obtain knowledge that spans different biological levels. As 
was demonstrated, there is still a considerable mismatch between the patient sets used 
for the different analysis platforms. This not only hinders the analysis of individual 
data sets, as data samples are often small, but also the integration of data sets, because 
the intersection of samples is even smaller. Still, with data sets becoming more 
complete as the project continues, integrated analysis will become important. An 
obvious way of integrating is to simply join data sets (over patient or tissue 
identifiers). Apart from scalability problems, this will be a straightforward step that 
will ideally lead to findings that involve cross-platform combinations of patterns. An 
alternative approach involves integration on the level of discovered knowledge rather 
than on the data level. For example, all data sets, except the SELDI-MS data, in some 
way map to loci on the genome. This means that if multiple data sets independently 
produce patterns involving the same locus, this will improve the evidence for this 
locus being involved in the biological process under investigation. 
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