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ABSTRACT
More and more, physical systems are being fitted with var-
ious kinds of sensors in order to monitor their behavior,
health or intensity of use. The large quantities of time series
data collected from these complex systems often exhibit two
important characteristics: the data is a combination of var-
ious superimposed effects operating at different time scales,
and each effect shows a fair degree of repetition. For exam-
ple, when monitoring a highway bridge, there will be sea-
sonal and daily fluctuations in the strain gauge readings due
to weather influences, as well as effects in the order of sec-
onds or minutes due to individual vehicles and traffic jams.
Each of these effects can be described by a small collection
of motifs: recurring temporal patterns in the data. We pro-
pose a method to discover characteristic motifs at multiple
time scales taking into account systemic deformations and
temporal warping. In this method, we use a combination
of scale-space theory and the Minimum Description Length
principle to weigh the representational benefit of recogniz-
ing candidate motifs against the increased model complexity
this may incur. We are thus guaranteed to report relevant
temporal patterns without the risk of over-fitting the data.
Our method will be validated on a number of real-world
datasets, including a large series of strain gauge measure-
ments from a concrete highway bridge and physiologic data
collected during a snowboarding session.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

General Terms
Time Series, Motif Discovery, Minimum Description Length

1. INTRODUCTION
This paper is concerned with the discovery of temporal pat-
terns in large time series, produced from physical sensors.
In all but the most trivial applications, such sensor data

will reflect the complexity of the physical system under in-
vestigation, and will show a combination of multiple effects.
Some of these effects will be of interest, and central to the
sensoring system, but others, such as noise and environmen-
tal effects, will merely be a disturbance and a hindrance to
the identification of the phenomena of interest. The com-
plex physical systems we aim to investigate here often have
two important characteristics: a) multiple phenomena are at
play in the sensor signal, and they typically occur at differ-
ent time scales, b) each phenomenon will involve recurring
events that will show up in the signal as repeating segments
of data, often deformed and warped. In this paper, we pro-
pose a method that elegantly combines these two character-
istics in order to discover recurring events at multiple time
scales.

As a motivating example, we consider a Structural Health
Monitoring (SHM) project involving huge quantities of sen-
sor data collected at a highway bridge, similar to the data
described in [7, 15]. Such bridge data fits our topic well, as
it is subject to a number of effects that both show recurring
events (traffic, daily temperature cycles), as well as largely
varying time scales. The vertical displacement of the bridge,
measured through strain gauges, is of course dependent on
individual vehicles passing the bridge, over a period of sev-
eral seconds (several tens of measurements). On a medium
scale, the strain signal will show traffic jams, lasting up to
an hour, that appear as clearly delineated intervals where
the strain is increased due to the higher number of vehicles
on the bridge. Finally, on a large scale, the strain is highly
sensitive to the temperature of the bridge, such that the sig-
nal is dominated by a slow movement of the baseline, most
notably with a day/night rhythm. Figure 1 shows 12 days
of data collected at this bridge (some 10 million readings).
Note that these different effects appear in a mixed fash-
ion, and events at different time scales will often overlap.
For example, traffic jams and individual vehicles will simply
appear superimposed on the continually changing baseline
of temperature effects on the strain. Additionally, vehicle
peaks (shown as a detail on the right) will appear in the sig-
nal, even during traffic jams, as these often only affect one
direction of traffic.

The recognition of repeating phenomena in time series is an
important task in many applications, as it enables further
processing of the data at a more conceptual level. For ex-
ample, in SHM, it allows to determine traffic load statistics
or various load-induced vibration patterns because it is vital



Figure 1: The plot on the left shows twelve days of strain measurements, sampled at 10 Hz from a highway
bridge. The data exhibits recurring events, often superimposed, at multiple time scales, such as individual
vehicles, traffic jams and daily fluctuations due to temperature changes. On the right it is shown an example
of motif due to a passing vehicle.

to know when exactly certain events occur (such as heavy
trucks). We assume that the recurring events will appear
in a relatively small set of classes (e.g. trucks, cars), which
we will refer to as motifs. The (scale-aware) motif discovery
method presented here will then determine what the rele-
vant motifs are, and when the different instances of each
motif occur. In the specification of motifs, we intend to al-
low for a certain degree of flexibility in terms of duration and
magnitude of the event. For example, a truck will be recog-
nized as such, despite minor variations in speed and weight
of the truck. Note that our definition of ‘motif’ is somewhat
different from the use in other papers dealing with a similar
problem [11], where a more strict matching based on Eu-
clidean distance of a segment of fixed duration is employed.
Although this approach works well in many scenarios, more
flexibility is needed in the applications we consider.

In the motif discovery task in complex data, an important
challenge we deal with is the possibility of superimposed
events. Instances of motifs in one scale will overlap those in
other scales, and the recognition of similar instances will be
disturbed, if the possibility of multi-scale interference is not
taken into account.

In this work, we propose an approach based on scale-space
images [17] and the minimum description length (MDL)
principle to address this problem [3]. The reason for choos-
ing an MDL-based approach is that it allows us to find sets
of motifs that represent a good trade-off between represen-
tation power and model simplicity. This guarantees that the
reported motifs are actual recurring phenomena, rather than
accidental coincidences, and that the motifs found are not
too similar to each other. The novelty of our code, compared
to a earlier approach [13] to the same problem, is that it ex-
plicitly supports the discovery of, potentially overlapping,
multi-scale motifs.

The main contribution of our work is an algorithm for effec-
tively finding multi-scale motifs that score well with respect
to the MDL principle. Our algorithm combines several key
ideas to achieve this:

• it uses scale-space images to characterize the contribu-
tion of the motifs at different temporal scales;

• it uses the zero-crossings of derivatives of the time se-
ries at different scales to identify repeating linear seg-

ments in the time series;

• it uses a a symbolic representation in combination with
suffix trees to identify promising motifs consisting of
these linear segments;

• it uses a greedy algorithm to select characteristic mo-
tifs that score well with respect to an MDL score.

We evaluate our method on a number of sensor-based time
series from various applications. Results show that our ap-
proach can effectively discover a small set of characteristic
motifs in the data, often directly related to particular events
in the corresponding application domain.

The structure of this paper is as follows. Section 2 will in-
troduce the notation and present necessary background in-
formation, including MDL, and the problem statement. In
Section 3, we will motivate and define our method. Section
4 will evaluate and discuss experimental results. Section 5
presents related work. Finally, in Section 6, we draw con-
clusions and present ideas for future work.

2. BACKGROUND AND
PROBLEM SETTING

In this section we introduce the notation, provide necessary
background information and formally define the problem.

2.1 Notation and Preliminaries
We deal with finite sequences of numerical measurements
(samples), collected by observing some property of a system
with a sensor and represented as time series as defined below.

Definition 1. A time series of length n is an ordered
sequence of values x = x[1], . . . , x[n] of finite precision. A
subsequence x[a : b] of x is defined as follows:

x[a : b] = (x[a],x[a+ 1], . . . ,x[b]), 1 ≤ a < b ≤ n

Moreover, and without loss of generality, we assume that the
values are collected at a constant rate and none of them are
missing and that the data has been z-normalized.

As motivated in the introduction, our goal is to find charac-
teristic motifs in the input time series at multiple temporal
scales. There are two equivalent ways of looking at motifs.



The first is that a motif is a structure that approximately
repeats itself in a large number of places in the time series.
The second is that a motif is a set of subsequences in the
data, each pair of which is similar to each other [11]. We
will refer to a structure that is approximately repeated in
the data as a motif ; subsequences of the data in which this
motif occurs are referred to as motif instances.

An important feature of the motifs that we are looking for is
that their instances can be warped or deformed to deal with
potential slight variations in the duration and intensity of
the events. This motivates our choice to represent motifs
using linear segments as follows.

Definition 2. A motif m is a sequence of linear segments
[(a1, b1), (a2, b2), . . . , (ak, bk)], where ai indicates the length
of a segment (the duration) and bi indicates the difference
in value between the begin and end points of the segment.

In principle, higher order polynomials or other more complex
functional representations may also be used to represent the
segments, but we found that linear segments are simpler,
have the advantage of avoiding overfitting, and are accurate
enough in most cases.

We will be looking for instances of these motifs in the data.

Definition 3. Given a set of motifs M , let I be a function
that maps a motif m ∈ M and a segment t of this motif to
a set of subsequences of x:

I(m, t) = {x[a1t : b1t], ...,x[akt : bkt]},

for some ait, bit ∈ {1, . . . , n} such that ait = bi(t−1) + 1
for t > 1 (i.e., the end of a segment determines the start
of the next segment). Then I(m, t) determines the set of
instances in x of segment t of motif m.

Some choices for I are better than others; ideally instances
closely resemble their associated motifs. The MDL score
introduced in the next section will be used to evaluate the
quality of a set of motifs M and of a function I.

Note that subsequences for the same motif and motif seg-
ment can have different lengths. This is necessary to deal
with time warping.

From a high-level perspective, the problem that we are in-
terested in is to identify a set of motifs that characterizes
the data well. Taking into account the multi-scale nature
of the data, it is desirable that instances of different motifs
can overlap. In this way, one motif can reflect a regularity
at a coarse scale, and another can reflect a regularity at a
finer scale superimposed on top of the coarse structure. The
next section defines more precisely how we evaluate a set of
motifs and its instances to reflect these requirements.

2.2 Minimum Description Length
Our main idea is to approach the problem of selecting motifs
as a model selection problem. This allows us to employ the
Minimum Description Length [3] principle to rank motifs.

MDL is an information-theoretic model selection framework
that selects the best model according to its ability to com-
press the given data. In our setting, a model consists of a
set of motifs M . Following the two-part MDL principle, the
best set of motifs to describe the time series x is the one
that minimizes the sum L(M) + L(x |M), where

• L(M) is the length, in bits, of the description of the
motifs, corresponding to a model;

• L(x |M) is the length, in bits, of the description of the
time series when encoded with the help of the motifs
M , that is the residual information not represented by
M .

In order to apply the MDL principle in practice, we need to
define an encoding scheme for a given set of motifs M and,
consequently, how to compute both L(M) and L(x | M).
However, we need first to clarify how we discretize the time
series as the MDL principle is only applicable to discrete
data. Both aspects are addressed in the following sections.

2.2.1 Time Series Values Discretization
In order to use the MDL principle, we need to work with a
quantized input signal. Because of this, we assume that the
values x[i] of the input time series x have been quantized
to a finite number of symbols by employing the function
defined below:

Q(x[i]) =
⌊ v −min(x)

max(x)−min(x)
l
⌋
− l

2

where l, assumed to be even, is the number of bins to use in
the discretization while min(x) and max(x) are respectively
the minimum an maximum value in x. Throughout the rest
of the paper, we assume l = 256.

One question that might arise is if such a quantization re-
moves meaningful information from the time series. In [4]
the authors show that the effect of quantization is rather
modest on several time series from various domains.

2.2.2 Encoding of the Model
We will first discuss the encoding of the model, i.e. a set of
motifs M . Each motif essentially consists of a sequence of
linear segments, each described by two integers. The length
of a segment cannot be longer than the total length of the
time series; hence, we use log2 n bits to encode it. The dif-
ference in value between the begin and end point is limited
by the quantization used; in our setting 8 bits are sufficient.
Finally, with log2 n bits we can encode the number of seg-
ments in a motif. Summing up we have

L(M) =

m∑
i=1

(log2 n+ ki(log2 n+ 8)),

where m is the number of motifs and ki is the number of
segments in motif i. We assume that these motifs are or-
dered in the encoding. We use this order to distinguish the
scales at which the motifs are present.



2.2.3 Encoding the Data
We will now describe how we compute L(x |M), that is the
description length of the time series when encoded with the
help of a set of motifs M . In the definition of the code we
will also use the instances I associated to each motif in M .
Our assumption is that a good selection of motifs M and
associated instances I will help to encode the data more
concisely.

We will first define the entropy of a time series as it is a key
concept we will need in the following paragraphs.

Definition 4. The entropy of a time series x, discretized
according to a set of values D, is defined as below

H(x) = −
∑
v∈D

P (x[i] = v) log2 P (x[i] = v)

where P log2 P = 0 in the case of P = 0 and P (x[i] = v)
indicates the fraction of points in the time series which has
value v.

Given the definition of entropy, we can define the description
length of a time series as follows, assuming we have not
identified any motifs.

Definition 5. Given a time series x of length n, its de-
scription length (in bits) is given by

L(x) = nH(x) .

Our main idea is now that a good choice of motifs M and
associated instances I(m, t) should lead to a code for the
time series with a description length shorter than L(x). To
this aim, we introduce a code for x given a choice of M
and I(m, t). It will be the task of the search algorithm to
determine the best configuration.

Concretely, for each chosen motif m and corresponding motif
instances I(m, t), we first encode the time stamps and the
(vertical) values at which the instances of the first segment
of m start. For one motif with ` instances, this requires
log2 n + `(log2 n + 8) bits, where log2 n bit are needed to
encode the number of instances, and log2 n and 8 are the
bits needed to code the starting time stamp and vertical
value, respectively.

There are instances for each segment in a motif. While en-
coding these, we need to allow for a certain amount of time
warping, and hence the segment in each instance may de-
viate both in length and in amplitude from the segment in
the motif. Both vertical and horizontal differences from the
segment in the motif can be represented by sequences of in-
tegers: the deviations of segment lengths can be represented
in one sequence [aijk | 1 ≤ i ≤ m, 1 ≤ j ≤ `i, 1 ≤ k ≤ ki],
where m is the number of motifs, `i the number of instances
of motif i and ki the number of segments in the motif; simi-
larly, the differences in value can be listed. In order to favor
only small numbers of values, we compute the description
length of these sequences employing an entropy-based en-
coding as in Definition 5.

This code for motifs and instances leads to an approxima-
tion of the data, as follows. For each position in the time
series, we determine the last motif in the ordered set of mo-
tifs which has an instance at this position. Whether a posi-
tion is covered by an instance is determined by taking into
account the starting positions of the first segment of the
motif, the lengths of the other segments in the motifs, and
the deviations from these lengths as encoded in the code of
deviations. The reason for using the order of motifs is that
we explicitly allow motifs to overlap. This allows us to deal
with the multi-scale aspects of the data.

The approximated value of a position in the time series cov-
ered by a motif is determined by linear interpolation between
the two end points of the motif segment in which the posi-
tion is included. These end points are determined similarly
from the encodings of locations, motifs and deviations.

Our remaining code for the data now consists of two parts.
First, for each position in the data covered by a motif, the
error is encoded with respect to the approximation. An
entropy encoding is used for these errors. Second, for the
remaining time stamps, which are not covered by a motif,
an entropy encoding is used as well to code the original value
for that position.

Note that in this code we have a constant number of dictio-
naries (for duration, difference in value, errors, and remain-
ing original time points). Hence, we do not need to calculate
the size of these dictionaries explicitly.

The final description length L(x | M) is given by the sum
of the lengths (in bits) of the code components described
above.

2.3 Problem Statement
We have now introduced the necessary definitions and back-
ground material to state our problem.

Given a time series x, we want to find a set of
motifs M and associated instances, such that the
sum L(M) + L(x |M) is minimized.

Clearly, this problem is hard to solve exactly. Hence, in the
next section we define a step-wise heuristic algorithm that
works well in practice.

3. MOTIF SELECTION ALGORITHM
The proposed heuristic motif discovery algorithm consists
of several steps, which will be shown to perform well in the
next section. The first steps will identify a set of promising
candidate motifs; the last steps select a characteristic subset
of the motifs based on the MDL scoring function discussed
earlier. Figure 2 shows a high level overview of our method
and the steps involved.

3.1 Finding Candidates Motifs
In this section we describe our candidate motif generation
procedure. Several key ideas underly this procedure.

• It uses the scale-space image to characterize the con-
tribution of the motifs at different temporal scales;
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Figure 2: Overview of the proposed motif discovery
and selection algorithm.

• It effectively identifies promising segments at multiple
scales by discretizing the time series using the deriva-
tives of the signal in scale-space in combination with
k-means clustering;

• In the discretized representation, it merges recurring
sequences of adjacent segments by employing a suffix
tree based approach.

The subsequent sections discuss this in more detail.

3.1.1 Scale-Space Image
Scale-space images [17] are a widely used scale parameteri-
zation technique for one-dimensional signals1 based on the
operation of Gaussian convolution. We use them to charac-
terize the contribution of the motifs at increasingly higher
temporal scales while, at the same time, removing (smooth-
ing out) the effect of the motifs at finer scales. We start
by giving the definition of convolution as presented in the
signal processing literature.

Definition 6. Given a signal x of length n and a response
function (kernel) h of length m, the result of the convolu-
tion x ∗ h is the signal y of length n, defined as:

y[t] =

m/2∑
j=−m/2+1

x[t− j] h[j]

1From now on, we will use the term signal and time series
interchangeably.

When referring to Gaussian convolution, h is defined as the
Gaussian kernel having mean µ = 0, standard deviation
σ and area under the curve equal to 1, discretized into m
values.2 Moreover, x is padded with m/2 zeros before and
after its defined range to account for boundary effects, as
x[t−j] may be undefined for some j. Lindeberg [10] provides
a detailed review on how to compute Gaussian convolutions
for discrete signals.

The Gaussian convolution essentially smooths each value
x[t] according to its neighboring values. The amount of re-
moved detail is directly proportional to the standard devi-
ation σ (and thus the kernel size m), from now on referred
to as the scale parameter. In the limit, when σ → ∞, the
result of the Gaussian convolution converges to the mean of
the signal x. We can now formally introduce the scale-space
image.

Definition 7. Given a signal x, its scale-space image is
the family of σ-smoothed signals Φx over the scale parameter
σ defined as follows:

Φx(σ) = x ∗ gσ , σ > 0

where gσ is a Gaussian kernel having standard deviation σ,
and Φx(0) = x.

We quantize the scale-space image across the scale dimen-
sion by computing the Gaussian convolutions only for a fi-
nite number of scale parameters. More formally, for a given
signal x, we consider a set of scale parameters S and we
compute Φx(σ) only for σ ∈ S. The number of scale pa-
rameters considered, and thus the resolution of the quanti-
zation, depends on the final application and on the distribu-
tion of the motifs across the scale dimension. If, for instance,
the motifs appear at considerably different scales, a coarser
quantization would suffice to isolate them across the scale
dimension. On the other hand, if different motifs appear at
similar scales, a finer quantization is needed to effectively
separate their corresponding contributions to the signal. In
order to support both scenarios, we define two sets of scale
parameters Scoarse = {2i | 0 ≤ i ≤ σmax ∧ i ∈ N} and

Sfine = {
√

2i | 0 ≤ i ≤ 2σmax ∧ i ∈ N} which well adapt to
the practical cases we consider.

As an example, Figure 3 shows the scale-space image com-
puted from an artificially generated signal with S = Scoarse.
The topmost plot represents the original signal, constructed
by three components at different temporal scales: a slowly
changing and slightly curved baseline, medium term motifs
(bumps) and short term motifs (peaks). By visual inspec-
tion, it can be easily verified that, by increasing the scale
parameter, a larger amount of detail is removed. In particu-
lar, the peaks disappear at scales greater than σ = 24 while
the bumps are smoothed out at scales greater than σ = 28,
after which only the baseline contributes to the scale com-
ponent.

We now deal with multi-scale aspect of the data by identi-
fying motifs in each of the scales in the scale image.

2To capture almost all non-zero values, we define m = b6σc.
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Figure 3: Scale-space image of an artificially generated signal consisting of two motifs at different temporal
scales and a slowly changing baseline.

3.1.2 Finding Candidate Segments
Before identifying candidate motifs, we first identify can-
didate linear segments. A useful tool to quickly identify
promising boundaries for linear segments in the time series
are the zero-crossings of derivatives.

Given a time series x and one of the components of its scale-
space image Φx(σ), let

z(j) = {t1, . . . , tm}, such that
djΦx(σ)

dt
(ti) = 0,

Z = z(1) ∪ · · · ∪ z(dmax)

be the sorted locations in Φx(σ) of the zero-crossing of its
derivatives until order dmax. Note that dmax will typically
be low, e.g. just 1 or 2.

These zero-crossings are informative as they indicate points
in the time series at which the direction of the signal changes;
these positions are good candidates for a change of the lin-
ear coefficients as well. Thus, each segment bounded by
two consecutive zero-crossings could be an instance of a seg-
ment in a motif. We use k−means clustering to identify
a small set of prototype segments, as follows. Each seg-
ment between zero-crossings can be thought of as a data
point in a feature space, where the features are the dura-
tion and difference in value between the zero-crossings of
the derivatives. More precisely, we consider the data points
FΦx(σ) = {fi = (hi, vi)} where

hi = ti+1 − ti , 1 ≤ i < n

is the time between each pair of consecutive zero-crossings
and

vi = Φx(σ)[ti+1]− Φx(σ)[ti] , 1 ≤ i < n

is their vertical distance. Figure 4 illustrates this concept.

These data points are clustered using the k−means clus-
tering algorithm, where k is a parameter that determines
the number of candidate segments. Preliminary experiments
show that setting the parameter k in practice is not a critical
problem.

The centers of the identified clusters are the candidate ref-
erence segments, which will be combined into motifs in the

ha
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Figure 4: Example of the feature space based on
the zero-crossings of the derivatives (only order one
in this figure) and the clustered candidate segments
identified by letters.

next step. Note that the clustering algorithm ensures that
candidate segments will be not too dissimilar from each
other. This procedure is repeated for each scale in the scale-
space independently.

3.1.3 Finding Candidate Motifs
The key idea in identifying motifs is to represent time series
symbolically (see Figure 4). Each symbol in this representa-
tion corresponds to the candidate segment identified by the
k−means algorithm for that segment.

After transforming each scale-space image component into
the symbolic representation defined above, we identify mo-
tifs by looking for repeating subsequences in the obtained
string as similarly done by previous approaches [6, 8], al-
though using different kinds of representations such as SAX [9].

Our candidate motifs generation procedure is summarized
in pseudo-code in Algorithm 1. ScaleSpaceImage(x, S) re-
turns the scale-space image of x defined over the scale pa-
rameters S. ComputeZeroCrossings(Φx(σi), dmax) calcu-
lates the zero-crossings of the derivatives for each scale.
SymbolicQuantization(Φx(σi), Z,A) transforms each time



Algorithm 1 Find candidate motifs

Input: a time series x, a set of scales parameters S =
{σ1, ..., σk}, the maximum order for the derivatives roots
dmax, the cardinality A of the symbolic representation,
the number of motifs considered per scale r

Output: a set of candidate motifsM = {Ms,r} indexed by
scale parameter s and rank r.
M = {}
Φx(σ1), ... ,Φx(σk) = ScaleSpaceImage(x, S)
for i = 1 . . . k do
Zi = ComputeZeroCrossings(Φx(σi), dmax)
Si = SymbolicQuantization(Φx(σi), Zi, A)
Σi = FindRecurringSubstrings(Si)
Mσi,r1 , ...,Mσi,rm = RankMotifsByCoverage(Σi, r)
M =M∪ {Mσi,r1 , ...,Mσi,rm}

end for

series Φx(σi) into a symbolic string given the zero-crossings
Z and cardinality A. FindRecurringSubstrings(Si) returns
the set of all maximal substrings of length at least 2 that
appear at least twice in the data (maximal in the sense
that no longer substring occurs twice). In general, we could
parameterize this; however, in our experiments we found
these parameters to work in all cases. Furthermore, an im-
portant advantage of this setup is that we can calculate
this set of substrings in linear time by using suffix trees.
RankMotifsByCoverage(Σi, r) selects the best scoring r mo-
tifs from this set of substrings. The evaluation is as follows:
the occurrences of each string in the time series are deter-
mined; these occurrences are mapped back to the original
time series; the total length of the original time series cov-
ered by these occurrences is determined. The main motiva-
tion is that we can expect the best coding motifs to be those
that cover large parts of the time series. The final selection
from the resulting set of candidate motifs is done in the next
step.

3.2 Selecting Characteristic motifs
The naive way to select the best set of motifs would be
to enumerate all potential subsets and choose the one that
minimizes the sum L(M)+L(x |M). However, the space of
motif sets grows exponentially with the number of candidate
motifs and this makes an exhaustive evaluation computa-
tionally infeasible for large time series. Because of this, we
propose a heuristic selection strategy that overcomes these
computational limitations. Our motif selection heuristic is
shown in pseudo-code in Algorithm 2.

Algorithm 2 Select characteristic motifs

Input: a time series x, a set of candidate motifs M =
{Ms,r} indexed by scale parameter s and rank r.

Output: a set of selected motifs C ⊆M.
C = {}
for i = k . . . 1 do

j = arg min
j∈{1,...,m}

L(C ∪ {Mσi,j}) + L(x | C ∪ {Mσi,j})

C = C ∪ {Mσi,j}
end for

Essentially this algorithm traverses the candidate motifs start-
ing at the coarsest scale and, for each scale, it adds the motif

that improves the MDL score the most.

3.3 Computational Complexity
The construction of the scale-space image requires to com-
pute |S| convolutions. This can be done efficiently using the
Fast Fourier Transform in O(|S|n log2 n) time. The compu-
tation of the zero-crossing of the derivatizes can be done with
a linear scan and thus has O(n) complexity. The complexity
of the symbolic transformation, carried out by k-means in
O(Ik |Z|) time depends on the number of zero-crossings fea-
tures to cluster which, given a property of the scale-space im-
age [17], can only decrease as the scale is increased; here I is
the number of iterations of the k−means algorithm. Prelimi-
nary experiments even show that the decrease in |Zi| is expo-
nential. Locating recurring substrings in the symbolic repre-
sentation can be done in linear time employing a suffix tree;
the number of such strings (|M|) is O(n) in the worst case
and much smaller in practice. We calculate the instances of
the corresponding motifs in O(n) time for each motif identi-
fied. Sorting the resulting motifs takes O(|M| log |M|) time.
During the final traversal of this set, we need to calculate
the MDL score for each intermediate model. This calcula-
tion takes O(|C|n) time; note that the size of the dictionaries
can be considered constant. Overall, this gives our method
a complexity of O(n log2 n+ |M|(log |M|+ |C|n) time.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate our method experimentally, on
two real-life sensor datasets, one describing physical exer-
cise, and one collected from the sensor network of the high-
way bridge mentioned in the introduction. Moreover, we
compare our method with another published approach on a
common dataset.

4.1 Snowboard Data
The first experiment relates to physiologic data collected
during a day of snowboarding in the Austrian Alps. The
data was collected by a Zephyr BioHarness3 3 breast strap,
which monitors several key physiological parameters and
logs them at a sampling rate of 1 Hz. Alpine sports are
an interesting domain for our method, as it naturally con-
tains the cyclic phenomenon of ascending by ski lift and
descending ‘on foot’. This produces a recurring pattern of
intense exercise while descending and clear signs of recuper-
ation while being transported up. Especially when the same
lift and slope are repeatedly taken, this will lead to motifs in
the measured time series. Additionally, on a smaller scale,
the natural tendency of the human body is to introduce
shorter cycles of activity and rest, especially when dealing
with intense activity and high altitude.

The data considered here describes heart rate measurements
taken during 2.5 hours of mixed activity, starting at 11:00
AM, with some 40 minutes actually spent on the slopes.
We employed Sfine as scale parameters, set dmax = 1 and
the cardinality of the symbolic representation to 10. Fig-
ure 5 shows two key selected motifs, which correspond to
the phenomena described above. The top motif represents
some 16 minutes, corresponding to recuperation (decreas-
ing heart rate while on the lift), exercise and recuperation
again. A full cycle of ascent and descent takes about 10

3http://www.zephyranywhere.com/products/bioharness-3
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Figure 5: Selected motifs in the Snowboard data. Left side: motif occurrences in the series. Right side:
motifs at the respective scale-space component after z-normalization.

minutes, which corresponds with the manual annotations.
This pattern occurs three times in this dataset, at the scale
component Φx(

√
214), as indicated by the red segments in

the diagram. Note that two instances actually overlap, as
the motif describes more than a single cycle. These two
instances actually relate to two descents of a single slope.
The second motif, at the scale component Φx(

√
27), has 10

instances of increasing and then decreasing heart rate, pre-
sumably related to short exercise intervals of around 50 sec.
A detail of this motif is shown in the bottom diagram, show-
ing just 20 minutes at 12:25.

The overall number of scale components considered for this
data is 22 for a total of 13 selected motifs. However, mo-
tifs selected at scales greater than 216 did not show motifs
relevant to this particular application domain.

4.2 Highway Bridge Data
We subsequently evaluate our approach on the time series
data previously shown in Figure 1. The series has been
collected in the context of a Structural Health Monitoring
project,and consists of 12 days of strain measurements (for
a total of 10, 280, 939 data points) from one span of the
monitored highway bridge. As the bridge is affected by sev-
eral phenomena operating at multiple time scales, the strain
measurements contain various classes of recurring motifs re-
flecting this fact and represents an ideal dataset to test our
method. We employed Scoarse as scale parameters and set
dmax = 1 and the cardinality of the symbolic representa-
tion to 10. Figure 6 shows two of the most interesting se-
lected motifs, respectively at scale components Φx(23) and
Φx(215). The first motif identifies the most recurring events
in the data, i.e. passing vehicles. In the graph, a red pixel
is drawn for each instance, for a total of 58, 646 occurrences,
which cover almost 22% of the data. On the right, we plot
all the motif instances (after normalization) superimposed,
as represented in the scale component Φx(23). The selected

motif represents a high variability of instances, in both du-
ration and amplitude, that can be directly related to the
speed and weight of the vehicles. This information can thus
be used by bridge managers to evaluate the load patterns
of the infrastructure and potentially aid the decision mak-
ing when planning maintenance activities. The second motif
represents a much longer pattern occurring on a daily ba-
sis due to changes in temperature that, in turn, affect the
response of the bridge to external forces. A total of 5 mo-
tif instances of this kind occur, covering around 24% of the
data. Note how occurrences of the first motif are superim-
posed over the instances of this one.

The overall number of scale components considered is 19,
although the motifs selected at scales greater than 217 are
not of any interest in relation to the application domain.

4.3 Comparison with related work
To the best of our knowledge, there are no published meth-
ods dealing with the discovery of characteristic sets of multi-
scale and overlapping motifs in time series data. As we can-
not compare our method with others in a multi-scale setting,
we chose to also evaluate our algorithm on a time series pre-
sented in [13], in which no multi-scale events are present. A
comparison on such data is of interest as our method should
be able to identify the non-overlapping motifs present in this
data as well.

The considered time series was produced by extracting the
first MFCC coefficients from an audio file featuring two re-
peated kinds of bird calls, resulting in two motifs present in
the data. The time series has a total of 1367 measurements.
As the motifs in the data are rather similar in length, we
do not need to consider the whole scale-space image. In-
stead, we set the scale parameters to S = {1,

√
2, 2,
√

8}.
The result shown here was obtained by setting the cardinal-
ity of the symbolic representation to 6. However, in order



Figure 6: Selected motifs in the highway bridge data. Left side: motif occurrences in the series. Right side:
motifs at the respective scale-space component after z-normalization.

to assess the sensitivity of the method in relation to the size
of the alphabet, we tried cardinalities ranging from 5 to 15
obtaining qualitatively similar results. Figure 7 reports the
motifs selected by our method. These motifs are similar to
those obtained by the clustering method proposed in [13] for
non-overlapping motifs. Although in this case we manually
specified the scale parameters, we note that the algorithm
in [13] also requires to provide an educated guess of param-
eters, i.e. of the approximate lengths of the motifs to look
for.

5. RELATED WORK
The problem of discovering recurring temporal patterns in
time series data is an important one and has received consid-
erable attention by the community from different perspec-
tives.

Subsequence Clustering. Early work considers the re-
lated problem of clustering the (overlapping) subsequences
in the time series extracted through a sliding window. Sub-
sequence clustering is an obvious and intuitive choice for
finding characteristic subsequences in time series. However,
this approach requires the a priori specification of the lengths
of the subsequences to consider and is not generally tailored
to support multi-scale data. Moreover, in a paper by Keogh
et al. [5], it was shown that, despite the intuitive match,
subsequence clustering is prone to a number of undesirable
behaviors that makes the end result meaningless and inde-
pendent of the data at hand. A number of papers [1, 2, 16]
have further investigated the observed phenomena, provid-
ing solutions to overcome it. Yet, since the publication of
[5], the subsequence clustering idea has seen a serious de-
cline in popularity. In [5], the authors proposed a solution
based on motif discovery.

Motif discovery and clustering. Motif discovery has
received a fair amount of attention, in particular after sub-
sequence clustering was shown to be unreliable. In [11], a
motif is defined rather strictly as the pair of most similar
subsequences in a time series according to the Euclidean
distance, and the authors propose an efficient and exact
method to find such pairs. Saria et al. [14], on the other
hand, propose a more flexible definition of motif, based on a

shape template that can be affected by non-linear transfor-
mations such as temporal warping and additive noise. They
introduce an unsupervised algorithm to discover the set of
canonical shape templates in the data. Although the method
is able to discover motifs of different lengths, it does not deal
with multi-scale data where multiple motifs at different time
scales could appear superimposed.

To the best of our knowledge, the most similar work to ours
is [13]. The authors propose a method to mine a set of
clusters of motifs from a given time series. The clusters are
formed according to an agglomerative procedure. First, a
single cluster is created containing the pair of most similar
subsequences in the data (this is done with repeated runs
of the exact motif discovery algorithm introduced in [11]).
After that, the set of clusters is iteratively refined by taking
one of the following actions: create a new cluster, add to a
cluster, merge two clusters. The algorithm looks for the best
operator to apply such that the MDL score for the clusters
set is lowered, or it stops otherwise. This method does not
however consider superimposed motifs like those found in
the multi-scale data we consider in this paper.

Multi-scale Time Series Data. Although several papers
address the problem of discovering recurring patterns in time
series, few of them consider data where combinations of ef-
fects at multiple temporal scales affect the patterns or mo-
tifs. In [12], Papadimitriou et al. propose a method to dis-
cover the key trends in a time series at multiple time scales
(window lengths) by introducing an incremental version of
Singular Value Decomposition. Vespier et al. [15] propose an
MDL-based method to recognize the most relevant scales of
analysis in the data and, consequently, to separate the time
series into distinct components. This method does not how-
ever characterize the individual motifs directly, but rather
assesses the relevancy on the informative content present at
each temporal scale.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a method for the discovery of
multi-scale recurring patterns (motifs) in time series data.
Our work is motivated by a SHM project which deals with
high-frequency measurements collected by a sensor network
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Figure 7: Selected motifs in the bird calls data from [13]. Left side: motif occurrences in the series. Right
side: motifs at the respective scale-space component after z-normalization.

deployed on a highway bridge. In particular, we focused
on a property that sensor data collected from complex sys-
tems typically exhibits: the presence of multiple phenom-
ena at play in the sensor signal, often occurring at differ-
ent time scales and potentially superimposed and mixed to-
gether. Because of the high degree of variability present
in this kind of data, we have adopted a definition of motif
based on structural complexity other than on point-wise sim-
ilarity (i.e. Euclidean distance) as in much previous work.
In order to discover the most characteristic recurring mo-
tifs, we proposed an algorithm based on a combination of
scale-space theory, string processing and the Minimum De-
scription Length principle. We showed the effectiveness of
our method on sensor data from several applications.

Future work includes evaluating our method on additional
data exhibiting multi-scale behavior, as a few datasets of
this kind are currently publicly available. Moreover, we are
interested in further developing the symbolic representation
we adopted, currently requiring the cardinality of the al-
phabet as a parameter; ideally, our method would become
parameter free.
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